Journal of Metals, Materials and Minerals

Publication Date



PP/soybean oil-g-chitosan binary composite, PP/hydrophobic phosphonated silica binary composite, and PP/chitosan/hydrophobic phosphonated silica ternary composite were prepared. Firstly, the preparation of soybean oil-g-chitosan was carried out by surface hydrophobicity modification of chitosan powder with soybean oil maleate and hydrophobicallyphosphonated silica was prepared by silanization of phosphonated silica with hexadecyltrimethoxysilane (an organosilane). Binary and ternary composites were prepared using a twin screw extruder. It was found that soybean oil-g-chitosan not only caused a decrease in tensile strength but also enhanced flexibility of PP due to its plasticization effect. In the opposite direction, the addition of hydrophobic phosphonated silica resulted in an increase in tensile modulus and a decrease in percent elongation at break due to reinforcement characteristic of silica particle. Effects of soybean oil-g-chitosan and phosphonated silica on antimicrobial activity and flame retardancy property, respectively, were evaluated. Results showed that binary PP composites containing soybean oil-g-chitosan exhibited antimicrobial performance when compared to neat PP. For binary composite containing phosphonated silica, flame resistance was improved which was indicated by relative char content. An addition of soybean oil-g-chitosan led to phosphorus-nitrogen synergism effect (70% of remaining residue weight at T 450?C) as found in case of ternary composite containing 1 wt% soybean oil-g-chitosan and 1 wt% phosphonated silica.

First Page


Last Page




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.