Journal of Metals, Materials and Minerals

Publication Date



Oxide scales as well as a Cr-depleted layer, which grows between the oxide scale and base metal, are formed on AISI 304 stainless steel surface during high temperature processing. Pickling is an important process which includes mechanical and chemical operations to remove oxide scales, Cr-depleted layers, and to recover the surface passivity. The multi-step pickling is commonly used because of its higher efficiency than a single step pickling. In this study, the multi-step pickling of AISI 304 stainless steel in HCl solution was investigated instead of H2SO4 solution for the first step of pickling. HF+HNO3 mixed acid is traditionally used in the second step of pickling. The pickling mechanism of HCl and H2SO4 was discussed based on weight loss and the pickled surface qualities. It was found that the first step pickling efficiency directly affected the surface qualities of the final pickled sample. HCl solution showed much lower pickling efficiency than H2SO4 solution. This resulted in a high concentration of remaining oxide scales and intergranular attack at the Cr-depleted layer, which cannot be completely removed in the second pickling step. Increasing of HCl concentration and electrolytic current did not improve the pickling efficiency. The addition of a small amount of H2O2, which is a strong oxidizing agent, significantly improves the pickling efficiency of HCl. A smooth surface without any oxide scale and free of intergranular attack could be obtained.

First Page


Last Page




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.