Chulalongkorn University Theses and Dissertations (Chula ETD)
การพัฒนาเครือข่ายนิวรอลสำหรับแสดงภาวะทรานเซียนต์ของแบบจำลองโรงไฟฟ้านิวเคลียร์ CANDU-9
Other Title (Parallel Title in Other Language of ETD)
Development of a neural network for identifying transient condition of the CANDU-9 nuclear power plant simulator
Year (A.D.)
1998
Document Type
Thesis
First Advisor
สุพิชชา จันทรโยธา
Second Advisor
Bereznai, George
Faculty/College
Graduate School (บัณฑิตวิทยาลัย)
Degree Name
วิศวกรรมศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
นิวเคลียร์เทคโนโลยี
DOI
10.58837/CHULA.THE.1998.794
Abstract
การประยุกต์ใช้เทคโนโลยีของเครือข่ายนิวรอลอย่างหนึ่งก็คือ การพัฒนาเครือข่ายนิวรอลชนิด Self-Organizing Feature Maps (SOFM) ขึ้นมาโดยมีวัตถุประสงค์เพื่อใช้แสดงฟังก์ชัน (Function) ที่ผิดปกติในโรงไฟฟ้าพลังงานนิวเคลียร์อันเนื่องมาจากภาวะทรานเซียนต์ที่ไม่ต้องการ แบบจำลองโรงไฟฟ้านิวเคลียร์แคนดู-9 (CANDU-9 Nuclear Power Plant Simulator) ได้ถูกใช้เป็นที่ฝึกและทดสอบความสามารถของเครือข่ายนิวรอลที่พัฒนาขึ้นพารามิเตอร์ (Parameter) 36 ตัวจะถูกเรียนรู้แบบรูป (Pattern Learning) ของทรานเซียนต์แต่ละทรานเซียนต์โดยเครือข่าย SOFM และพิสูจน์ว่าเป็นฟังก์ชันที่ผิดปกติฟังก์ชันใดที่มีอยู่ในแบบจำลอง ช่วงเวลาที่ใช้ในการทดสอบการรู้จำแบบรูป (Pattern Recognition) คือ 5, 10 และ 15 วินาที พบว่าเครือข่ายที่พัฒนาขึ้นสามารถบอกภาวะทรานเซียนต์ได้ถูกต้องทั้งหมดภายในช่วงเวลาการรู้จำ 15 วินาที โดยดูได้จากสหสัมพันธ์ระหว่าง SOFM อ้างอิงที่เก็บไว้ในฐานข้อมูลกับ SOFM ที่สร้างขึ้นอย่าง Real-Time ในระหว่างเกิดทรานเซียนต์
Other Abstract (Other language abstract of ETD)
An application of neural network technology using Self Organizing Feature Maps (SOFM) has been developed for the purpose of identifying malfunctions that cause unwanted transients in nuclear power plants. The training of the neural network and testing its capability have done using the CANDU-9 Nuclear Power Plant Simulator. The SOFM network uses 36 plant parameters to learn the patterns associated with each transient, and subsequently to identify any one of the 17 presently available malfunctions on the Simulator. In order to recognize a given transient, identification times of 5, 10 and 15 seconds A high degree of correlation has been found to exist between the reference SOFMs in the database and the ones obtained in real time for each transient being identified.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
ธนาภรณ์ชินพงษ์, พิพัฒน์, "การพัฒนาเครือข่ายนิวรอลสำหรับแสดงภาวะทรานเซียนต์ของแบบจำลองโรงไฟฟ้านิวเคลียร์ CANDU-9" (1998). Chulalongkorn University Theses and Dissertations (Chula ETD). 22315.
https://digital.car.chula.ac.th/chulaetd/22315