Chulalongkorn University Theses and Dissertations (Chula ETD)

การจำลองข้อมูลเพื่อเปรียบเทียบความแม่นยำในการพยากรณ์ ระหว่างวิธีโครงข่ายประสาทเทียมกับวิธีซัพพอร์ตเวกเตอร์แมชชีน

Other Title (Parallel Title in Other Language of ETD)

A simulation Study to compare prediction accuracy between artificial Neural network and support vector machine

Year (A.D.)

2013

Document Type

Thesis

First Advisor

นัท กุลวานิช

Faculty/College

Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)

Degree Name

สถิติศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

สถิติ

DOI

10.58837/CHULA.THE.2013.564

Abstract

การวิจัยในครั้งนี้ มีวัตถุประสงค์เพื่อเปรียบเทียบความแม่นยำในการพยากรณ์ระหว่างวิธีการโครงข่ายประสาทเทียมแบบแพร่ย้อนกลับกับวิธีซัพพอร์ตเวกเตอร์แมชชีนด้วยฟังก์ชัน เคอร์เนล โดยใช้ Receiver Operating Characteristic (ROC) เป็นเครื่องมือวัดประสิทธิภาพความแม่นยำในการพยากรณ์จำแนกประเภทของข้อมูล โดยใช้พื้นที่ใต้โค้ง ROC (Area Under ROC Curve : AUC) และใช้อัตราความผิดพลาดในการจำแนกประเภทข้อมูล (Misclassification Rate : MCR) พิจารณาค่าเฉลี่ยของ AUC จะได้ว่า วิธีซัพพอร์ตเวกเตอร์แมชชีนด้วย Laplacian Kernel ให้ประสิทธิภาพความแม่นยำในการพยากรณ์จำแนกประเภทของข้อมูลได้ดีที่สุดในกรณีที่ข้อมูล มีการแจกแจงแบบชี้กำลังและข้อมูลที่มีการแจกแจงแบบปกติ ส่วนกรณีที่ข้อมูลมีการแจงแจกแบบปัวส์ซงนั้น วิธีโครงข่ายประสาทเทียมแบบย้อนกลับ ให้ประสิทธิภาพความแม่นยำในการพยากรณ์จำแนกประเภทของข้อมูลดีที่สุด พิจารณาค่าของเฉลี่ยของ MCR จะได้ว่า ในทุกกรณีของการแจกแจงที่ศึกษาในงานวิจัยนี้นั้น วิธีซัพพอร์ตเวกเตอร์แมชชีนด้วย Laplacian Kernel ให้ค่าอัตราความผิดพลาดในการจำแนกประเภทข้อมูลได้ต่ำที่สุด และวิธีโครงข่ายประสาทเทียมแบบย้อนกลับ ให้ค่าอัตราความผิดพลาดในการจำแนกประเภทข้อมูลได้สูงที่สุดในทุกรณี

Other Abstract (Other language abstract of ETD)

This thesis attempted to identify a simulation study to compare prediction accuracy between the backpropagation artificial neural network and support vector machine. The method was to compare the forecasting accuracy using area under ROC curve (AUC) and misclassification rate (MCR). The average values of the AUC was the support vector machines with the laplacian kernel method provides better prediction performance than the backpropagation artificial neural network in most cases ,except in case independent variables was poisson distribution The average values of the MCR was that in all cases the distributions was studied in this research . Method with support vector machines with the laplacian Kernel to the error rate in the classification have the lowest . The Backpropagation Artificial Neural Network have the error rate in the highest classification in all cases.

Share

COinS