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## 6270045723 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : POINT CLOUD / BUILDING INFORMATION MODELING (BIM) / THREE-

DIMENSIONAL (3D) SEGMENTATION / RANSAC / DBSCAN / NORMAL DEVIATION

THANAPON DOOUGPHUMMET : 3D BUILDING INTERNAL STRUCTURAL COM-

PONENT SEGMENTATION FROM POINT CLOUD DATA USING DBSCAN AND

MODIFIED RANSAC WITH NORMAL DEVIATION CONDITIONS. ADVISOR : AS-

SOC. PROF. RAJALIDA LIPIKORN, Ph.D., THESIS COADVISOR : ASSOC. PROF.

PETARPA BOONSERM, Ph.D., 50 pp.

Nowadays, the laser scanner plays an important role as a tool to capture building

structure in a form of point cloud which can be used to draw a blueprint or a floor plan

for reconstruction or renovation of an existing building. The point cloud data represent

a shape or an object in three dimensions. This point cloud together with the utilization

of Building Information Modeling (BIM) which is a workflow that provides information

about the foundation and structure measurement of a building, make a planning and de-

sign to construction more convenient and efficient in several aspects than the traditional

way. However, using BIM to design or construct the internal structure of an existing

building from point cloud manually can be very time consuming and requires a highly

skilled engineer. The development of a method that can automatically construct the

internal structure of an existing building from point cloud can facilitate the process of

model creation. Among the whole process of construction, segmentation is an important

process that identifies the main components of a building, which is still a challenging prob-

lem for researchers to develop an algorithm that can automatically segment the internal

structural components of the building.

The objective of this research is to develop a segmentation method that can extract

the planar structures of a building from point cloud using the modified Random Sample

Consensus (RANSAC) algorithm. The original RANSAC is modified by reducing the
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computational complexity using localized sampling, and the quality of segmentation is

improved by adding normal deviation with connectivity constraints to RANSAC’s score

calculation. The original RANSAC and the proposed method were evaluated on the Inter-

national Society for Photogrammetry and Remote Sensing (ISPRS) benchmark dataset.

The segmentation results of the proposed method were visually compared to the results of

the original RANSAC and it can be seen that the extracted components from the proposed

method are closer to the actual structure and can also preserve the overall characteristics

of the buildings.

Department : . . . . . . . . . . . . . . . . . .Mathematics . . . . .and . . . . . . . . . . Student’s Signature . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .Computer. . . . . . . . .Science. . . . . . . . . . Advisor’s Signature . . . . . . . . . . . . . . . . . . . . .

Field of Study : . . . . . . . . . . . .Applied . . . . . . . . . . . . . . .Mathematics. . . . .and. Co-advisor’s Signature . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .Computational . . . . . . . . .Science. . . .

Academic Year : . . . . . . .2022. . . . . . . . . . . . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii

ACKNOWLEDGEMENTS

I would like to deeply express sincere gratitude to Associate Professor Dr. Rajalida

Lipikorn, my advisor, for her kind advice and guidance that carried me through all the

stages of writing my thesis. I am extremely grateful for her to give me inspiration that

drove me into the field of applied mathematics and image processing, it is a great honor

to work under her supervision. I would also like to acknowledge Associate Professor

Dr. Petarpa Boonserm as my co-advisor, and I am gratefully indebted to her for her

encouragement and valuable comments on this thesis.

I would like to thank the scholarship support, the Development and Promotion of

Science and Technology Talents Project (DPST), for providing educational opportunities,

and also deeply appreciative to the Department of Mathematics and Computer Science,

Faculty of Science, Chulalongkorn University for making it possible for me to complete

my master’s degree. I would like to express my great appreciation to the International

Society for Photogrammetry and Remote Sensing (ISPRS) for providing benchmark on

indoor modelling dataset.

Finally, I would like to express my very profound gratitude to my family and my

friends for providing me with support and encouragement throughout my years of study

and through my rough times during the process of researching and writing this thesis.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS
Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE REVIEW AND BACKGROUND KNOWLEDGE . . . 4

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Point cloud and Laser scanner technology . . . . . . . . . . . . . . . 6

2.2.2 2D drawing or 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Scan-to-BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Voxel downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Normal estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.7 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.8 Normal deviation condition . . . . . . . . . . . . . . . . . . . . . . . . 18

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1.1 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . 21



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

CHAPTER Page

3.2.1.2 Normal Estimation and Rotation . . . . . . . . . . . . . . . 22

3.2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2.1 Floor and ceiling extraction . . . . . . . . . . . . . . . . . . 24

3.2.2.2 Room segmentation . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2.3 Wall extraction . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 SEGMENTATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Floor and ceiling extraction results . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Room segmentation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Wall extraction results and the comparison . . . . . . . . . . . . . . . . . . . 36

5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 40

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi

LIST OF TABLES

Table Page

3.1 Setting thresholds involved in this thesis . . . . . . . . . . . . . . . . . . . . . . . 32



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xii

LIST OF FIGURES

Figure Page

2.1 BIM lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Voxel downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Normal estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 RANSAC algorithm line fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 RANSAC algorithm flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 DBSCAN algorithm flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Circle primitive, data points and their normal . . . . . . . . . . . . . . . . . . . . 19

3.1 ISPRS benchmark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Overview of the proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Point cloud data and their estimated normal vectors . . . . . . . . . . . . . . . . 24

3.5 Extracted floor and ceiling obtained from slicing the frequency histogram . . . 25

3.6 The top views of the ceiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Remaining point cloud after the floor and ceiling are extracted . . . . . . . . . 29

3.8 Algorithm flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Extracted ceiling before and after removing connected points . . . . . . . . . . 34

4.2 Screenshots of the point cloud on room segmentation . . . . . . . . . . . . . . . 35

4.3 Results of wall extraction from the original RANSAC and the proposed method 36

4.4 Results of wall extraction from the original RANSAC and the proposed method 37

4.5 Results of wall extraction from the original RANSAC and the proposed method 38



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I

INTRODUCTION

1.1 Rationale

Designing and planning is a preliminary process of any building renovation.

The blueprint that represents the 2D structural components and their measure-

ments are redrawn by the traditional tools called Computer-Aided Design and

Drafting, or CAD since the original blueprint might not be up-to-date and inaccu-

rate to use with the reconstruction or renovation of the existing building because

the overall structure is usually different from the original blueprint due to modi-

fication.

Recently, the introduction of Building Information Modeling (BIM) led us

to an alternative way to create 3D models of the building from point cloud data

to collaborate with the reconstruction or renovation of the existing buildings. The

need to use BIM has increased due to its efficiency and the advance in 3D scanner

technology that allows us to collect data in a form of point cloud, which is a set

of data points in a space representing 3D objects. This type of data can be used

to obtain a 3D model to assemble with the original blueprint for a more precise

and up-to-date model that can be processed manually with the building-modeling

software. However, the computation time of this process is very high, and highly

skilled engineer is needed. This problem led to the release of the more advanced

building-modeling techniques that can automatically reconstruct the 3D model

from point cloud data and provide more facilities to fit with today’s applications.

The overall process of reconstruction of the indoor environment of a building
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from point cloud usually consists of three steps: data collection, point cloud data

segmentation, and BIM creation [1]. Data collection is the process of obtaining

point cloud data using a 3D capture technology to construct the data that repre-

sent the scene. Next step is the point cloud data segmentation that detects and

segments the structural components of a building from point cloud because point

cloud data consist of several other components, such as people, tables, chairs, and

air conditioning. These segmented point cloud data are then used to create a 3D

model of the structural components in the final step.

1.2 Scope of work

As previously mentioned, point cloud data segmentation is an important

step of the indoor environment reconstruction, thus several segmentation meth-

ods have been proposed. However, methodological studies on segmentation are

still ongoing for better results and performance. There are still some challenges

in segmentation, for example the accuracy and the computational complexity of

structural component segmentation where most of the models are constructed

from planar surfaces of a building that are parts of walls, floors, and ceilings that

connect into rooms, corridors, etc. These challenges lead to the development of a

robust point cloud data segmentation that can automatically detect and segment

the structural components.

1.3 Research Objectives

• To propose the point cloud data segmentation method of the structural

components that improves the segmentation results.

• To develop the algorithm that can automatically segment structural compo-

nents from point cloud data.
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1.4 Thesis overview

The content is divided into 5 chapters. In chapter II, related work and

literatures regarding point cloud reconstruction and segmentation are discussed

and followed by background knowledge that are necessary to this thesis. In chapter

III, the proposed methodology is explained starting from the preparation of input

data to enhance the performance of further operations to the segmentation of floor,

ceiling, room, and wall. In chapter IV, the segmentation results of the structural

components by the proposed method are discussed, and a comparison of the wall

segments using the original RANSAC and the proposed method is given. Finally,

chapter V summarizes and discusses the outcomes of this thesis.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

LITERATURE REVIEW AND

BACKGROUND KNOWLEDGE

This chapter is divided into two parts: literature review and background

knowledge. Related work and literatures related to this research are reviewed and

followed by background knowledge that are used in the proposed method.

2.1 Literature review

The indoor environment of the building generally comprises plane geometric

primitives. The 3D model of the indoor environment can be created by detecting

and extracting these geometric primitives from point cloud. Tarsha-Kurdi et al.

[2] compared the results of roof plane detection from Lidar data between Hough-

transform [3] and random sample consensus (RANSAC) algorithm [4], it can be

concluded that RANSAC overcomes Hough-transform in terms of successful detec-

tion, time, and space complexity. Moreover, this paper also suggested to enhance

the RANSAC algorithm in order to increase the percentage of successfully detected

results and improve the quality of detected roof planes. By giving more priority to

the standard deviation of the detected points and using the binary digital surface

model to assess noisy points and small roof planes.

Through the use of localized sampling by the octree space partitioning tech-

nique, RANSAC’s performance on geometric primitive detection was enhanced

in terms of speed and robustness [5]. Testing the model with a subset of points

instead of the entire data also reduced the computational complexity of the algo-
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rithm.

In addition, a floor plan can also be used to specify the boundary of the

room that helps the reconstruction of the building. To generate the floor plan, the

cell decomposition technique had been employed after acquiring linear primitive

information from the wall [6]. The floor plan space was divided into cells by

the intersection of previous information, and then the labeling of the cells was

carried out. Budroni et al. [7] used the plane sweep technique to detect the

positions of the structural components along with the floor plan generation using

cell decomposition to create a 3D model. This technique requires wall information

as a priori. Recently, through the use of the Delaunay triangulation technique,

Capocchiano et al. [8], [9] proposed an algorithm for recovering the ceiling layout

from extracted ceiling sections. After that, the connection between the edges in

each generated triangular mesh was taken into account to determine the ceiling’s

edge. This technique uses only the ceiling information to extract the layout.

Lately, a variety of techniques have been used and developed, which has re-

sulted in more designs for automated processing chains and methodologies. Macher

et al. [10], [11] proposed the semi-automatic methods that used a binary image’s

region growing along the z-axis to identify individual rooms, then segmentations

are combined with classification to separate point cloud data into grounds, ceilings

and walls. Next, RANSAC algorithm was used to segment point cloud data that

are classified as walls into individual walls. Finally, wall, ground, and ceiling point

cloud data were used to reconstruct the 3D model.

Another literature proposed to employ graphs in room layout detection [12].

Each wall was represented by a node and graphs were created with respect to their

connectivity, followed by finding the cuboid from cycles of four continuous walls,

and classifying the connection as the final sequence. For a more automatic method,
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proposed by Cui et al. [13], walls, floors, and ceilings can be obtained directly

using a density histogram along with z coordinates, and RANSAC. Rooms were

segmented by visibility analysis based on scanner position, and finally, the model

was reconstructed with the help of multi-label graph cuts and energy functions.

However, the performance of structural component segmentation can be im-

proved further, therefore this research proposed a new method to enhance plane

segmentation by using a density-based algorithm for discovering clusters in large

spatial databases with noise (DBSCAN) [14] as localized sampling and supple-

menting RANSAC by connectivity and normal deviation conditions.

2.2 Background Knowledge

Depending on the demand, point cloud processing can be understood in a

variety of contexts. In general, point cloud processing can be described as the

creation of a 3D model. This section mentions point cloud, capture tools, the

use of point cloud in a BIM scene, and the techniques used for the segmentation

process in this research, which involves preprocessing and segmentation.

2.2.1 Point cloud and Laser scanner technology

Point cloud is a digital three-dimensional representation of a real-world space

or object. It composes of several millions of individual measurement points taken

from the surface of objects, each with associated x, y, and z coordinates. Each

point can additionally have intensity information or even RGB color information,

which indicates the return strength of the laser pulse that generated the point,

depending on the technique used to capture the cloud and the sensors involved.

A digital 3D model that represents an object accurately and in detail can subse-

quently be created by using these formats. Laser scanners and photogrammetry

are the two primary tools employed to capture point cloud.
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A laser scanner is a survey-grade system with a variety of sensors and tech-

nologies, which takes hundreds of thousands of incredibly accurate measurements

per second using laser pulses. The ranges are determined by using a laser to target

an object or a surface, then measuring the time it takes for the reflected light to

return to the receiver. Most laser scanners also include an RGB camera to provide

their color.

Laser scanners are available on the market for a wide range of specialized

tasks, such as the capturing of objects, roads, or railways, as well as the creation of

extensive topographic maps. To fulfill the needs of any project, you can combine

various devices to create final point cloud by joining the point cloud together. In

general, data from laser scanners are more accurate than those from photogram-

metry.

Rather than being a specific kind of tool, photogrammetry is more of a

methodology that uses cameras to capture images of the environment from all

angles, then use specialist software to manipulate the images to construct a 3D

registration of the scene.

2.2.2 2D drawing or 3D model

The use of blueprints as a design aid for building planning for reconstruction

is nothing new. It is a technical drawing that includes lines and curves to illustrate

a reconstruction design from survey and measuring the existing building such as

a floor plan. It doesn’t provide any additional details regarding the building

property.

On the other hand, BIM is an integrated workflow that is built from coor-

dinated and reliable information of a project from design through construction

and into operation as shown in Figure 2.1. It is composed of virtual objects that
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represent building components. In a BIM model, components from the real world

are represented by actual elements. The components are not only in three di-

mensions, but they also contain parameters encoded into them to define their

elements’ properties and functional information, such as the model number, in-

stallation date, component connectivity, and any other information that would be

important to the construction.

Figure 2.1: BIM lifecycle

In general, a blueprint for construction design contains the drawings from

many different points of view while only one model is needed to be created when

using BIM and the drawings of this model from any point of view or orientation

can be generated, thus this can save time. Each element of a building is drawn

once, and it can be displayed in any view whenever their visibility is enabled.

2.2.3 Scan-to-BIM

As previously described, a BIM model is a digital representation of physical

and functional properties. Scan-to-BIM is a process that involves capturing high-

density point cloud of a real building, building structures, or site and turning it
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into a digital model that can be utilized for planning.

The flexibility of using BIM allows us to record the measurements and ele-

ments of an existing building even after the construction is complete. The most

common usage of a data set obtained from BIM is in the context of reconstruction

or renovation. The demand for BIM implementation in the Architecture, Engi-

neering, and Construction (AEC) industry is growing, as is the demand for the

creation of BIM schematics for existing buildings. Scan-to-BIM is quickly turning

into an important step in the BIM process.

The construction process documentation can provide the model with the

most critical information when a project involves an existing structure or site, as

it will in most situations. As a result, the process known as ”scan-to-BIM,” which

involves digitally capturing a physical space or site as laser scan data and using

that information to construct, develop, and maintain the BIM model, becomes

valuable.

The benefits of BIM are as follows:

• Construction process documentation is often outdated, fragmented, or both.

It can waste lots of time elaborately assembling the data to create one co-

hesive model. Using BIM can update and verify the overall direction of

construction which can cooperate with several stakeholders in one model.

• BIM can keep track of what work is completed, when it is finished, and where

it is completed at every stage of a project, allowing to compare progress to

plan.

• This tool enables checking for errors, conflicts, and clashes in the structure.

along with the planning and maintenance.
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• Fast and accurate.

Therefore, the creation process is a major stage of the BIM process, and its

expansion is directly proportional to the utilization of BIM in building construc-

tion, renovation, and maintenance. Another factor is that point cloud technology

becomes more commonly accessible and practical, which encourages AEC profes-

sionals to consider using scan-to-BIM.

Due to the demand for BIM applications, studies, research, and development

of processing chains have been increased to facilitate automated access to BIM

models.

2.2.4 Voxel downsampling

The point cloud’s volume and density have a direct impact on how much

detail the data represent. However, if the volume of point cloud data is too big, it

can affect the computation time. Thus, if it is not necessary to create a BIM model

with fine detail, it is possible to reduce the volume of data without significant loss

of detail using one of the methods called voxel downsampling.

In this algorithm, the input point cloud is uniformly downsampled using a

regular voxel grid. The algorithm operates in two steps as follows:

1. Point cloud data are bucketed into voxels, which create a 3D voxel grid

over the input point cloud data.

2. For each voxel, the coordinates of all point cloud data that are located

within it will be replaced with their centroid as shown in Figure 2.2.

The sampling size can be adjusted by setting the voxel size along each dimen-

sion, generally with a fixed size, depending on the demand on the level of detail to
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Figure 2.2: Voxel downsampling

be preserved while minimizing processing time. A smaller voxel size retains more

information about the original point cloud data but requires more computation

time than a larger voxel size.

Although it is a little slower than replacing the coordinates of point cloud

data with the voxel’s center, this technique represents the underlying surface more

accurately and also has a decent cloud distribution.

Note that when we employ a detection method that takes into account the

neighborhood or the density of data in a particular location, the usage of voxel

downsampling can help reduce the density bias.

2.2.5 Normal estimation

The orientation of surfaces, which can be utilized to determine whether sur-

faces in the nearby region are morphologically related, is the information that

could be used later. This portion of data is typically not given. Consequently, it

is necessary to estimate the normal which will be used as one of the features for

further segmentation.
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One of the methods for estimating the normal at any point on a surface

is to use its neighbors to predict its behavior or orientation. In this thesis, the

covariance analysis is used to assess the principal axis of each point. This estima-

tion requires the sphere radius of neighbors and the maximum number of nearest

neighbors. The estimated normal is then obtained from equations (2.1) – (2.4):

C =
1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T , (2.1)

C · v⃗j = λj · v⃗j, (2.2)

where C is the covariance matrix, k is the number of neighboring points, p̄ is the

centroid of the nearest neighbors, pi is the point within the neighborhood of p̄,

the superscript T denotes the transpose of a matrix, v⃗j is the j-th eigenvector of

the covariance matrix, and λj is the j-th eigenvalue of the covariance matrix. The

eigenvalues can be solved from the characteristic polynomial in equation (2.3):

F (λ) = det (C − λI) = 0, (2.3)

where I is the identity matrix. After obtaining the eigenvalues, each eigenvalue is

used to identify the corresponding eigenvector from equation (2.2) to get

(C − λjI) · v⃗j = 0. (2.4)

After the eigenvalue λj and the eigenvector v⃗j are obtained through principal

component analysis, the normal for each point is represented by its eigenvector

that belongs to the smallest eigenvalue as shown in Figure 2.3.
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(a) The eigenvectors of the covariance matrix (b) Point cloud data and their normal

Figure 2.3: Normal estimation

2.2.6 RANSAC

Random sample consensus algorithm (RANSAC) is an algorithm used to

detect common geometric primitives, such as straight lines in two dimensions,

and the plane in three dimensions by determining the score over the data that

contains inliers and outliers. The algorithm is iterative and uses random samples

to estimate the parameters and generate the candidate plane respectively. It is

simple but works even when observing data are associated with noise or outliers.

The score is determined by counting how many point cloud data belong to

each candidate plane using a specific distance threshold value. In general, the plane

should only contain inliers, but since the random sample might be contaminated,

the resample of the data is required for some specified number of trials to ensure

that there are no outliers. The model with the highest score will finally be used

to estimate the plane’s parameters that represent these data as shown in Figure

2.4.

The algorithm is based on the probability that the random sample will cause
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Figure 2.4: RANSAC algorithm line fitting

the sample containing only inliers be found, usually setting the probability to

greater than 0.90. The number of random samples or trials is calculated by

T =
1− log (1− α)

log (1− (1− e)s)
, (2.5)

by deriving equation (2.6)

α = 1− (1− (1− e)s)
T
, (2.6)

where e is the probability that a point is an outlier,

s is the number of points in a sample,

T is the number of trials,

α is the desired probability that a sample contain only inliers.

In this thesis, the number of points in a sample, s, is set to 3 points for the

detection of planar structure. The desired probability, α, is set to 0.90, and 1−e is

determined by the number of points in the smallest plane divided by the number

of points in a data set. After that, the number of trials T can be calculated.
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Equation (2.5) states that the number of trials strongly depends on a variable

e which comes from the proportion of the outlier and the whole data. For the

planar structure detection, the RANSAC algorithm can be performed according

to Figure 2.5.

Figure 2.5: RANSAC algorithm flow chart

The algorithm starts by randomly choosing 3 points as the initial, then

generating a plane model from those points, and determining which points belong

to a model using the distance from the plane model to those points, repeating

until the trials meet the value we have set or until no more plane segment are left.
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2.2.7 DBSCAN

A density-based algorithm for discovering clusters in large spatial databases

with noise (DBSCAN) is a density-based clustering algorithm that can detect

clusters of different sizes and shapes from a large volume of data with noise. It

works by detecting areas where data points gather densely and separated by areas

that are sparse.

There are some definitions that are related to DBSCAN as follows:

Definition 2.1. (The core point condition). The Eps-neighborhood of point p in

a database D is written by NEps (p), defined by

1) NEps (p) = {q ∈ D | dist (p, q) ≤ Eps} ,

2) |NEps (p)| ≥ MinPts.

A point p must have a minimum number of neighbor points (MinPts) in

an Eps-neighborhood in order to be considered as having a sufficient density.

The dist (p, q) denotes any distance function between two points p and q, such as

Euclidean distance.

Definition 2.2. (Directly density-reachable). Point q is directly density-reachable

from point p if

1) q ∈ NEps (p) and

2) |NEps (p)| ≥ MinPts; p is core point.

Definition 2.3. (Density reachable). Point q is density reachable from point p if

there exists a sequence of p1, ..., pn where p1 = p, pn = q such that pi+1 is directly

density reachable from pi; i = 1, ..., n− 1.
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An expansion of the points by a sequence of points with sufficient density is

explained by Definitions 2.2 and 2.3. If there is a point that is density-reachable

to any two points, we also refer to those points as being density-connected.

A cluster refers to a non-empty subset of points that are density-connected

to each other. And border points are points that are part of a cluster, but not a

core point.

Definition 2.4. (Noise). Given C1, ..., Ck denote the clusters of data. Then, noise

is the set of points in data that do not belong to any cluster Ci; i = 1, ..., k, written

by

noise = {p ∈ D | ∀i : p /∈ Ci} .

Then, the concept of DBSCAN clustering is illustrated in Figure 2.6.

Figure 2.6: DBSCAN algorithm flow chart
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As previously mentioned, the algorithm has the ability to segment data in a

variety of shapes, with the required parameters including Eps and MinPts. The

algorithm starts by randomly select an initial point as a seed, then retrieving all

density-reachable points from the seed with respect to Eps and MinPts. If the

seed is identified as a core point, then a cluster is formed. On the other hand, if

the seed is identified as a border point, the algorithm return to randomly select a

new seed that has not been visited. These procedures repeat until all points have

been processed.

2.2.8 Normal deviation condition

In segmentation tasks, shape detection can be improved through the use of

normal features or the orientation of data to detect the shape we are interested in.

For example, the normal of a pipe system can indicate its direction [15]. Moreover,

it can be seen that in the nearby area of the same object, there should be similar

orientations of surfaces, thus the normal pattern is the information that can be

helpful in selecting a set of points that belong to a given primitive.

The normal of points that have the potential to be part of an object repre-

sented by geometric primitive, should not deviate from each other by some angle,

i.e., any point p that follows the normal pattern, is denoted by

arccos (|n (p) · n (ω, p)|) < α, (2.7)

where n(p) is the normal of point, p, and n(ω, p) is the normal of shape, ω, in the

same perspective or from p projection onto the shape, and α is a specified angle

threshold.

Figure 2.7 shows an example of normal patterns that consists of a circle model

with the candidate model represented in dash line, the red points represent the
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data together with their normal, and the normal from the model at the projection.

(a) The data are attached to a circle model with
similar normal orientations

(b) The normal of black points deviate from the
model which may consider as not belonging to
the model

Figure 2.7: Circle primitive, data points and their normal

This chapter discussed the related research in the field of point cloud re-

construction, and also described background knowledge regarding point cloud,

capture tools, the use of point cloud in BIM scene, and the techniques used in

this research such as voxel downsampling, normal estimation, RANSAC, and DB-

SCAN. The next chapter will explain the proposed methodology, which involves

the preparation of input data and the segmentation of floor, ceiling, room, and

wall.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

METHODOLOGY

The input data and the proposed method are explained in this chapter. The

proposed method for structural component segmentation is divided into two parts

consisting of preprocessing, and segmentation.

3.1 Input data

Using the International Society for Photogrammetry and Remote Sensing

(ISPRS) [16] benchmark on indoor modelling point cloud dataset, the proposed

method was assessed and compared with the original RANSAC method using

the data from one of the buildings of the Technische Universität Braunschweig in

Germany captured by the Viametris iMS3D system that can be seen in Figure

3.1(a). The data are stored in two distinct files: the point cloud data and the

trajectory. The scene, which has a size of approximately 33.6×106 points with

no color, is composed of several rooms on one floor that are enclosed by walls

of different thicknesses. There is a corridor that links the rooms, but no stairs.

Several doors and windows, either open or closed, are also included in the scene.

The level of clutter, which refers to elements other than structural components,

is low and mostly corresponds to the presence of people during the survey. The

average point spacing in this dataset is 0.005 meters (m). The reference model of

the same dataset was manually created by Autodesk RevitTM software as shown

in Figure 3.1(b).

3.2 The proposed method

The proposed method for structural component segmentation is divided into

two parts: preprocessing and segmentation as shown in Figure 3.2.
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(a) A screenshot of the point cloud. Curves in red color represent sensor
trajectories

(b) The reference model

Figure 3.1: ISPRS benchmark dataset

3.2.1 Preprocessing

In order to enhance the performance of subsequent operations, this prelim-

inary process is required to manipulate because the quality or characteristics of

data vary depending on the type of capture devices.

3.2.1.1 Downsampling

The first step of preprocessing is downsampling. This step can reduce redun-

dant computation caused by a large volume of point cloud data. Data must first

be downsampled using the voxel downsampling technique. To reduce the number

of points from the input, the downsampling size is set to 0.05 m because the ma-
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Figure 3.2: Overview of the proposed method

jority of structural components such as walls, ceilings, and floors are thicker than

this value. Although a bigger downsampling size can yield faster processing, it can

also cause a wall that is thinner than the downsampling size to disappear. This

technique can maintain the details of data while reducing unnecessary computa-

tion and the density bias resulting in data collection and registration process. An

example of downsampling result is shown in Figure 3.3.

3.2.1.2 Normal Estimation and Rotation

The rotation to align the orientation of point cloud data is performed to

facilitate further process for some building datasets that do not follow the law of

gravity. The Manhattan World assumption [17] describes that most of the real-

world buildings’ structure position can be approximated by planar surfaces that

are parallel to one of the three principal planes as shown in Figure 3.4(a). To align

the orientation of point cloud data, first, the angle of rotation can be estimated

from the normal surface of a floor or a ceiling. Since a ceiling or a floor covers

the largest area of the building’s surface, it must be represented by a big group

of points with a similar orientation. Therefore, the original orientation of the

building can be estimated based on the dominant direction of the surface normal

of these points. The normal represented by the principal axis of each point on a

surface is calculated using covariance analysis from its neighbors in a sphere with
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(a) The original input data

(b) Downsampled data

Figure 3.3: Downsampling

a radius set to 0.10 m and a maximum number of nearest neighbors set to 12

points. The sphere size should not be too large because it can make the normal

to be imprecise. The sphere size is set equal to two times the downsampling size,

since the previous step guaranteed that there would be at least one point in a

voxel of size 0.05 m. The number of neighbors is limited to 12 points if the sphere

size considering the planar structure is 0.10 m.

Following the estimation of the normal for each data point, the normal is

collected, the k-means algorithm [18] is then applied to divide the collection of

normal into clusters, and the orientation of the building is assumed to be in the

same direction as the dominant direction of the biggest cluster as shown in Figure

3.4(b). The rotation is then performed corresponding to the angle between the
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standard orientation and the building orientation to obtain data considered as the

Manhattan frame.

(a) Point cloud data of the indoor environment of
the building from ISPRS Benchmark datasets

(b) Density plot of their normal
vectors

Figure 3.4: Point cloud data and their estimated normal vectors

3.2.2 Segmentation

The segmentation is divided into floor and ceiling extraction, room segmen-

tation, and wall extraction, respectively.

3.2.2.1 Floor and ceiling extraction

The characteristic of the aligned data obtained from previous step allows

us to consider frequency histogram of the z-axis. The peak of a histogram at

low elevation tends to represent the floor and the peak at high elevation tends

to represent the ceiling which are used to extract the floor and the ceiling. The

z-coordinate histogram’s bin size is 0.05 m as illustrated in Figure 3.5(a). The

segmentation can accurately extract the floor and the ceiling for this dataset by

slicing the z-values around the peak at intervals of 0.30 m as shown in Figure

3.5(b).
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(a) Frequency histogram of the z-values (b) Extracted floor and ceiling

Figure 3.5: Extracted floor and ceiling obtained from slicing the frequency histogram

3.2.2.2 Room segmentation

Since the complexity of the RANSAC algorithm significantly depend on the

size of the data in a random sampling process, the difference between the RANSAC

and the proposed random sampling strategy is described below.

Consider point cloud of size N and a target candidate model, ω, consisting

of n points. The probability of detecting ω in a single pass with minimal subset

of s points is

P (n) =

(
n

s

)
/

(
N

s

)
(3.1)

and the probability that at least one sample among k samples of s points compos-

ing of only inliers of the model is

P (n, k) = 1− (1− P (n))k (3.2)

Solving equation (3.2) for k to estimate the number of samples T required to detect

ω of size n with a probability P (n, T ) ≥ α :
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1− (1− P (n))T ≥ α, (3.3)

1− α ≥ (1− P (n))T , (3.4)

ln(1− α) ≤ T · ln (1− P (n)) , (3.5)

T ≥ ln(1− α)

ln(1− P (n))
(3.6)

where the Maclaurin series of ln(1− P (n)) is

−
∞∑
i=1

P (n)n

n
= −P (n)− P (n)2

2
− P (n)3

3
− · · · , (3.7)

= −P (n)−O
(
P (n)2

)
. (3.8)

so

T ≈ −ln(1− α)

P (n)
. (3.9)

The complexity of the RANSAC random sampling is O(T ) = O
(

1
P (n)

)
.

Considering P (n)

P (n) =

(
n

s

)
/

(
N

s

)
, (3.10)

=
n!

(n− s)!s!
/

N !

(N − s)!s!
, (3.11)

since (n− s)! = n!
n(n−1)(n−2)···(n−s+1)

, as well as (N − s)!

=
n!n(n− 1) · · · (n− s+ 1)

n!s!
/
N !N(N − 1) · · · (N − s+ 1)

N !s!
, (3.12)

=
n(n− 1)(n− 2) · · · (n− s+ 1)

N(N − 1)(N − 2) · · · (N − s+ 1)
, (3.13)

≈ ns

N s
. (3.14)
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thus
1

P (n)
≈ N s

ns
(3.15)

Next, consider applying the idea of a localized sampling to the RANSAC al-

gorithm in order to reduce unnecessary computation. Since the data is partitioned

into subspaces, then

Plocal(n) =

(
n

s

)
/

(
βN

s

)
, (3.16)

≈ ns

(βN)s
, 0 < β ≤ 1 (3.17)

thus
1

Plocal(n)
≈ (βN)s

ns
. (3.18)

The difference between 1
P (n)

and 1
Plocal(n)

makes the proposed method with

the implementation of the localized sampling faster than the original algorithm.

As a ceiling commonly demonstrates the boundaries of each room, it is no-

ticeable that each room is separated from one another by slight spaces as seen in

Figure 3.6(a). Using the DBSCAN algorithm, the ceiling data are divided into

individual rooms based on their coordinates. A cluster is an adjoining region of

points with high density that is separated from other clusters by regions of points

with low density. For the same reason as a normal estimation when looking at

planar structures, the DBSCAN’s radius is set to 0.08 m, and its minimum number

of neighbors is 6. As demonstrated in Figure 3.6(b), the algorithm uses spatial

information to analyze each data point and assign the room’s label. Note that the

connected regions must be handled manually in the case that the ceilings are still

connected, which could occur if there was an error made during the data collection

step.
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(a) Extracted ceiling

(b) The labeled ceilings as shown in different colors

Figure 3.6: The top views of the ceiling

The remaining points are then assigned the labels using information from

the labeled ceiling once the ceiling, which serves as the boundary of each room,

has been retrieved. Every remaining point is projected onto the ceiling plane

and labeled with respect to the corresponding labeled ceiling. As a result, this

process enables the utilization of localized sampling to reduce the burden on the

computation. The remaining points are sampled from the room-by-room subsets

as shown in Figure 3.7 rather than from all of the remaining points. This resulted

in the reduction of the computational complexity by several factors.

For example, when using the probability of finding the good sample, men-

tioned in equation (2.5), equal to 0.9 according to the standard setting, which

is typically between 0.90-0.99, a set of 350,793 points needs to be re-sampled

1,553,060,809 times, whereas a segmented room containing 59,201 points only re-

quires 7,464,880 with the difference of more than 200 times.
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(a) Remaining points (b) Labeled remaining points

Figure 3.7: Remaining point cloud after the floor and ceiling are extracted

3.2.2.3 Wall extraction

The original algorithm worked by first obtaining an initial solution using

the smallest set of data before enlarging the solution with data from the entire

dataset that were consistent with the initial solution. According to the implemen-

tation, the original algorithm did not yield satisfactory results for the building of

indoor environment datasets. The problems are the segmentation accuracy of the

extracted planes, and connectivity. RANSAC’s estimation were based on scores,

which may be too coarse, resulting in low plane quality. Due to lack of con-

nectivity and high computation time on large data that consists of many objects

when RANSAC random sampling was done through the entire data, as a conse-

quence, this research proposes to modify RANSAC by using localized sampling

to reduce the computational complexity and applying connected components and

normal deviation conditions into score calculation part to improve the accuracy

and smoothness of the detected plane which can be seen in Figure 3.8. The mod-

ified RANSAC was used to extract vertical planes representing the wall segments
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from the remaining data points that contain parts of the wall segments and clutter.

Figure 3.8: Algorithm flow chart

Once the threshold distance defining the inliers was set to 0.05 m and the

angle between the detected plane and dominant axis was set to be less than 10

degrees, the algorithm iteratively re-sampled the minimal subset to generate the

candidate walls until there was no more data point on the wall. The algorithm

repeated from one room to another.

Besides using the modified RANSAC, the DBSCAN algorithm was used to

analyze the connectivity of data for connected components. The algorithm used

a distance radius of 0.08 m and a minimum number of neighbors of 6 points to

assess if the detected plane segment was large enough to be recognized as a wall.
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Another parameter is the segment size, the standard wall specification in this

research requires that a wall segment’s size must be at least 0.25 m × 2 m, or 200

points corresponding to the downsampling process. The normal deviation between

the detected plane and the inlier point should be constrained by the specified angle

threshold, which was set to 10 degrees, in order to maintain the smoothness of the

detected plane.

In this chapter, the input data, the ISPRS benchmark on the indoor mod-

elling point cloud dataset, was described. The proposed methodology is explained,

starting from preprocessing, the input data is prepared by performing voxel down-

sampling and normal estimation with rotation. Segmentation was then described

that is, floor and ceiling are extracted by considering the frequency histogram

along the z-axis, the room is segmented by the projection of the remaining point

onto the labeled ceiling obtained by using the DBSCAN algorithm, and the wall

is extracted using the modified RANSAC. After that, the proposed method can

be performed structural components segmentation to obtain floor, ceiling, and

wall segments. The proposed method is applied with the default threshold values

setting as shown in Table 3.1.
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Description Value

Voxel downsampling size 0.05 m

Normals search radius 0.10 m

Normals maximum nearest neighbor 12 points

Bin size of z-coordinate frequency histogram 0.05 m

Ceiling and floor slicing interval 0.30 m

RANSAC distance threshold defining the inliers 0.05 m

RANSAC minimum number of points required 200

Maximum angle between detected plane and dominant axis 10

Maximum angle between detected plane and inlier points 10

DBSCAN distance radius 0.08 m

DBSCAN minimum number of neighbors 6 points

Table 3.1: Setting thresholds involved in this thesis

To evaluate the performance of the proposed method, the original RANSAC

and the proposed method were tested on the same dataset and the visual aspect

of the results were compared in the next chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

SEGMENTATION RESULTS

The experiment and results are discussed in this chapter. Results from floor

and ceiling extraction are presented in the first section, followed by results from

room segmentation, and results with a comparison of the wall segments from wall

extraction using the original RANSAC and the proposed method are given in the

last section.

The experiments were performed on Jupyter Notebook version 6.0.3. The

proposed method and visualization were implemented using Open3D, an open-

source library that supports rapid development of software that works with 3D

data in both C++ and Python. The input data from ISPRS is a text file (.txt),

and the point cloud data contain x, y, and z coordinates.

4.1 Floor and ceiling extraction results

The extracted ceiling and floor are displayed in Figure 4.1(a). However, the

implementation has a defect, that is the ceilings that were subsequently used to

determine the boundary for each room were still connected, which are enclosed by

the red circles shown in Figure 4.1(b). These data points were caused by an error

made during the data collection step, which will result in DBSCAN malfunction.

Therefore, the connected points in those areas were manually removed and the

result of the extracted ceiling after removing connected points is shown in Figure

4.1(c).
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(a) Extracted ceiling and floor

(b) Extracted ceiling with connected points

(c) Extracted ceiling after removing connected
points

Figure 4.1: Extracted ceiling before and after removing connected points
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4.2 Room segmentation results

The DBSCAN algorithm was used to cluster the ceiling from the extracted

ceiling after removing connected points obtained from section 4.1. The room

segmentation results are displayed in Figure 4.2 from the top view and the close-

up. After the points on the ceiling were clustered into individual rooms with

labels by color as shown in Figure 4.2(a), the room segmentation result that were

obtained from the projection of the remaining points is shown in Figure 4.2(b).

(a) The labeled ceilings (b) The remaining points obtained
from room segmentation

(c) Close-up result (d) Incorrect segmentation in the red circles

Figure 4.2: Screenshots of the point cloud on room segmentation

Considering the details in the close-up results, the quality of the room seg-

mentation result is quite reliable as shown in Figure 4.2(c); however, there are still
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some errors from segmentation as shown in Figure 4.2(d), where some parts of the

extracted ceilings did not completely cover the rooms, leading to mislabeling in

that section.

4.3 Wall extraction results and the comparison

The modified RANSAC algorithm with localized sampling was then applied

to extract the walls from the remaining points after they had been partitioned

into subspaces. Figures 4.3 - 4.5 illustrate the results and the comparison between

the original RANSAC and the proposed method from the same perspective, where

different colors represent different detected segments.

(a) The top view of the results from the original RANSAC

(b) The top view of the results from the proposed method

Figure 4.3: Results of wall extraction from the original RANSAC and the proposed
method

The results from Figures 4.3(a), 4.4(a), and 4.5(a) were extracted using

the original RANSAC, and the results from Figures 4.3(b), 4.4(b), and 4.5(b)

were obtained from extraction using the modified RANSAC. Overall, it can be
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(a) The close-up view from the original RANSAC where there is a
person in the red circle, a scanner in the green circle, and discon-
nected walls in the blue circle

(b) The close-up view from the proposed method

Figure 4.4: Results of wall extraction from the original RANSAC and the proposed
method

noticed that the original RANSAC algorithm broke up the walls into fragments

and could not clearly distinguished the walls from the clutter. On the other hand,

the proposed method can accurately segment the walls.

The results of the original RANSAC demonstrate that RANSAC used only

scores to determine the walls in Figures 4.3(a), 4.4(a), and 4.5(a). This has an

effect on segmentation of the indoor scene because the scene usually contains non-

structural objects. Thus, the segmented walls, as illustrated in Figure 4.4(a),
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(a) The close-up view from the original
RANSAC where the red circle shows
the detected wall with no connectivity

(b) The close-up view from the
proposed method

Figure 4.5: Results of wall extraction from the original RANSAC and the proposed
method

also associate the clutter of a scanner and a person. Moreover, due to a lack

of connectivity constraint, the segmented walls may compose of small planes or

various irrelevant plane components. Moreover, Figure 4.4(a) shows that the walls

were broken into fragments as each wall is displayed in many different colors. For

instance, the original RANSAC determined that the purple wall strip in the blue

circle located in-between the grey wall is connected to another purple wall even

though they are not actually connected, but instead it should belong to the grey

wall. On the other hand, the modified RANSAC can solve this problem as shown

in Figure 4.4(b) where the wall is displayed by only one color in purple. Figure

4.5(b) shows the walls that were acquired using the modified RANSAC, which

eliminated all disconnected components from the result, in contrast to Figure

4.5(a), which shows the segmented walls that are not connected in the red circle.
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The results from modified RANSAC obviously demonstrate that the method

can distinguish the walls from the clutters, which makes the results more trust-

worthy. Additionally, it can handle the problem of disconnected walls having a

similar orientation as seen in Figure 4.4(a). Including the normal deviation and

connectivity constraints to the original algorithm make the proposed method to

segment the walls appropriately.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis presents a robust segmentation method using DBSCAN and mod-

ified RANSAC with normal deviation conditions to detect planar structural com-

ponents for the indoor environment of a building from point cloud data. This

chapter discusses the conclusion of the thesis and provide some possibilities about

future work.

5.1 Conclusions

Chapter I discusses the significance of the preliminary process of a building

reconstruction that uses point cloud data and BIM to create 3D models for de-

sign and planning through the reconstruction. Moreover, this thesis intends to

improve and develop the automatic structural component segmentation method

for the indoor environment data of the building. Related research and back-

ground knowledge are explained in Chapter II. Some explanations on point cloud,

scanner technology, and the use of BIM are also included. Point cloud process-

ing techniques used in this thesis, including voxel downsampling, normal estima-

tion, RANSAC and DBSCAN algorithms are explained, along with the concept

of normal deviation. The RANSAC algorithm, that is used to detect the planar

structure, needs to be modified for better performance in building reconstruction

from point cloud. Therefore, the modified RANSAC is proposed for indoor en-

vironment data. Chapter III presents the details regarding input data and the

proposed method. The proposed method starts with voxel downsampling, nor-

mal estimation, and rotation to enhance the input data for segmentation. The
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proposed segmentation is divided into two main stages: floor and ceiling are ex-

tracted by slicing at the peaks of the frequency histogram of the data along the

z-axis, the rooms are partitioned into subspaces by using DBSCAN to identify

their boundary on the ceiling, and walls are finally extracted by using modified

RANSAC. Since segmentation by the original RANSAC yields low quality, lack

of connectivity and requires high computation time, the RANSAC algorithm is

modified. The computational performance is enhanced through random sampling

in subspace. The score calculation of the algorithm is modified to also include con-

nectivity constraints and normal deviation to improve segmentation accuracy. In

chapter IV, the segmentation results using the proposed method are discussed and

compared with those obtained from using the original RANSAC. The proposed

method can reduce the computational complexity by partitioning the whole floor

into subspaces, then performing localized sampling, which helps the RANSAC al-

gorithm to enable faster detection. The segmentation is improved with the help

of the normal deviation and connectivity constraints added to RANSAC’s score

calculation. It can separate the clutter from the walls and detect connected walls.

However, the algorithm is unable to identify walls that are not smooth or flat,

which may be encountered in typical situations where curtains may be included.

The results from this research consist of point cloud of the segmented plane

with their parameters which can be used to construct a floor layout by consider-

ing the intersection of the extracted walls that are projected onto the horizontal

plane and the height can be estimated by the extracted floor and ceiling eleva-

tion. Moreover, these data can be used in 3D model generation by BIM extensible

software in the future.
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5.2 Future work

Since the segmentation contains several processes in the framework that

integrate various fields of study, there are some suggestions that may be considered

to be future work to complete the automatic algorithm that covers all processes.

• Solving manual processes such as room segmentation that remain in this

thesis in order to reduce interaction of a user during the process.

• The further study of related research is needed for the development of the

algorithm’s limitations.

• The study of translation techniques to automatically transform the results

obtained from this thesis into the BIM model.

• An analysis of the performance and the results of the algorithm are needed

to clarify the quantitative accuracy.
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APPENDIX A : The modified RANSAC code for plane segmentation in

python.
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APPENDIX B : Part of the planar parameters detected in form of Ax +

By + Cz +D = 0 and the number of points belonging to the model (BSup).
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