Beyond quenching profile for singular semilinear parabolic partial differential equations with mixed boundary conditions

Benjamin Thaitavorn

Faculty of Sciences

Follow this and additional works at: https://digital.car.chula.ac.th/chulaetd

Recommended Citation
https://digital.car.chula.ac.th/chulaetd/5715

This Thesis is brought to you for free and open access by Chula Digital Collections. It has been accepted for inclusion in Chulalongkorn University Theses and Dissertations (Chula ETD) by an authorized administrator of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
ลักษณะหลังการเควนช์สำหรับสมการเชิงอนุพันธ์ย่อยแบบพาราโบลิกกึ่งเชิงเส้นเอกฐานที่มีเงื่อนไขขอบแบบผสม

นายเบญจามิน ไทยถาวร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิตสาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคอมพิวเตอร์ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัยปีการศึกษา 2565

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย
BEYOND QUENCHING PROFILE FOR SINGULAR SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH MIXED BOUNDARY CONDITIONS

Mr. Benjamin Thaitavorn

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Applied Mathematics and Computational Science

Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University
Thesis Title BEYOND QUENCHING PROFILE FOR SINGULAR SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH MIXED BOUNDARY CONDITIONS

By Mr. Benjamin Thaitavorn

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Associate Professor Ratinan Boonklurb, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master’s Degree

.......................... Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

.......................... Chairman
(Associate Professor Khamron Mekchay, Ph.D.)

.......................... Thesis Advisor
(Associate Professor Ratinan Boonklurb, Ph.D.)

.......................... Examiner
(Monchai Kooakachai, Ph.D.)

.......................... External Examiner
(Associate Professor Tawikan Treeyaprasert, Ph.D.)
เบญจามิน ไทยถาวร: ลักษณะหลังการเควนช์สำหรับสมการเชิงอนุพันธ์ย่อยแบบพาราโบลิกกึ่งเชิงเส้นเอกฐานที่มีเงื่อนไขขอบแบบผสม. (BEYOND QUENCHING PROFILE FOR SINGULAR SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH MIXED BOUNDARY CONDITIONS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ.ดร.รตนันท์ บุญเคลือบ

กำหนดให้ $0 < r < 1$, $L > 0$, $T \leq \infty$, $D = (0, L)$, $\Omega = D \times (0, T]$ และ χ_S เป็นฟังก์ชันลักษณะเฉพาะของเซต S วิทยานิพนธ์อื่นนี้ ศึกษาลักษณะหลังการเควนช์ของผลละเอียดของปัญหาค่าเริ่มต้น และค่าขอบของปัญหาสองปัญหาต่อไปนี้

$$u_t - u_{xx} - \frac{r}{x} u_x = f(u) \chi_{\{u < c\}}(u) \text{ ใน } \Omega,$$

$$u(x, 0) = 0 \text{ บน } D.$$

ภายใต้เงื่อนไขค่าขอบแบบผสม

$$u(0, t) = 0 = u_x(L, t) \text{ สำหรับ } 0 < t < T$$

หรือ

$$u_x(0, t) = 0 = u(L, t) \text{ สำหรับ } 0 < t < T$$

โดยที่ f เป็นฟังก์ชันที่ต่อเนื่องจาก $[0, c)$ $\leq c$ บางค่า และ $f(0) > 0$, $f' > 0$, $f'' \geq 0$ และ $\lim_{u \to c^{-}} f(u) = \infty$ เราสามารถแสดงได้ว่าในแต่ละปัญหา เมื่อ t เข้าสู่ ∞ ผลละเอียดหลังการเควนช์จะค่อยๆสลายลงและสลายลงเรื่อยๆ ซึ่งกำหนดโดยการแก้ปัญหาค่าขอบของปัญหา โดยที่ปัญหาแบบบน $(0, \ell^*_S)$ และปัญหาที่เหลือบน (ℓ^*_S, L) ซึ่ง ℓ^*_S เป็นค่าคงตัวที่เริ่มจากที่ค่าของปริศนาในตัวแปร S ขึ้นตามวิธีเชิงตัวเลข สำหรับการคำนวณค่าของ ℓ^*_S มีการสร้างให้สำหรับปัญหาแต่ละปัญหาด้วย

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์ ลายมือจัดพิมพ์ ...
วิทยาการคอมพิวเตอร์ ลายมือจัดพิมพ์ อ.ที่ปรึกษาหลัก ..
สาขาวิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์ ลายมือจัดพิมพ์ อ.ที่ปรึกษาช่วย
และวิทยาการคอมพิวเตอร์ ..
ปีการศึกษา 2565 ..
Let $0 < r < 1$, $L > 0$, $T \leq \infty$, $D = (0, L)$, $\Omega = D \times (0, T]$ and χ_S be the characteristic function of the set S. This thesis studies beyond quenching solution profiles of the two initial-boundary value problems:

$$u_t - u_{xx} - \frac{r}{x} u_x = f(u) \chi_{\{u < c\}}(u) \text{ in } \Omega,$$

$$u(x, 0) = 0 \text{ on } \overline{D}$$

subject to the mixed boundary conditions:

$$u(0, t) = 0 = u_x(L, t) \text{ for } 0 < t < T$$

or

$$u_x(0, t) = 0 = u(L, t) \text{ for } 0 < t < T$$

where f is a twice continuously differentiable function on $[0, c]$, for some constant c, with $f(0) > 0$, $f' > 0$, $f'' \geq 0$ and $\lim_{u \to c^-} f(u) = \infty$. It is shown in each problem that, as t tends to ∞, all weak solutions tend to a unique steady-state solution determined by solving two boundary value problems: one on $(0, \ell^*_s)$ and the other on (ℓ^*_s, L), where ℓ^*_s is a positive constant to be obtained numerically. A numerical method for computing the value of ℓ^*_s is provided for each problem.
I would like to express my deepest appreciation to my thesis advisor, Associate Professor Dr. Ratinan Boonklurb, for his invaluable guidance, encouragement, and unwavering support throughout my graduate studies. His mentorship has been instrumental in shaping my research skills and nurturing my academic growth. I am also grateful to my thesis committee members, Associate Professor Dr. Khamron Mekchay, Dr. Monchai Kooakachai, and Associate Professor Dr. Tawikan Treeyaprasert, for their insightful feedback and constructive criticisms that greatly enhanced the quality of this work.

I would like to thank the Faculty of Science, Chulalongkorn University, for awarding me the “Vidyabundit” scholarship, which provided financial support for my studies. I also extend my gratitude to the Department of Mathematics and Computer Science for the opportunities to present my research and for funding other academic endeavors during my graduate studies.

My sincere thanks also go to my family and colleagues who have supported me through my studies, providing encouragement, motivation, and comfort during difficult times.

Lastly, I am grateful to OpenAI.com for providing access to their natural language processing service through ChatGPT API, which has greatly assisted in refining the wording and improving the readability of this thesis.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT IN THAI</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT IN ENGLISH</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Literature review</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Research problem</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Thesis organization</td>
<td>6</td>
</tr>
<tr>
<td>2 QUENCHING PROFILE OF LEFT IBVP</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Beyond quenching profile</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Bound for ℓ_s^*</td>
<td>13</td>
</tr>
<tr>
<td>3 QUENCHING PROFILE OF RIGHT IBVP</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Beyond quenching profile</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Bound for ℓ_s^*</td>
<td>21</td>
</tr>
<tr>
<td>4 NUMERICAL METHOD FOR QUENCHING PROFILES</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Boundary value problem discretization</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Numerical method for the Left IBVP</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Numerical method for the Right IBVP</td>
<td>29</td>
</tr>
<tr>
<td>4.4 Demonstrations</td>
<td>30</td>
</tr>
<tr>
<td>5 CONCLUSION</td>
<td>36</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>39</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>41</td>
</tr>
<tr>
<td>BIOGRAPHY</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Numerical approximations of ℓ^*_s for $f(u) = (1 - u)^{-\beta}$</td>
</tr>
<tr>
<td>4.2</td>
<td>Numerical approximations of ℓ^*_s for $f(u) = \alpha - \beta \ln (1 - u)$</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>35</td>
</tr>
</tbody>
</table>

4.1 Steady-state solution profiles for (a) Left IBVP and (b) Right IBVP where
\[r = \frac{1}{5}, \ L = 5 \ \text{and} \ f(u) = (1 - u)^{-1/3}. \]

4.2 Steady-state solution profiles for (a) Left IBVP and (b) Right IBVP where
\[r = \frac{1}{5}, \ L = 5 \ \text{and} \ f(u) = 1 - \ln (1 - u). \]
In the mid-twentieth century, studies on certain classes of differential equations that exhibit nonlinearity in their boundary conditions or equations revealed that their solutions can become unbounded and cease to exist after finite time intervals [13]. This occurrence is known as blow-up. Another related phenomenon is quenching, where a solution becomes discontinuous and loses its regularity.

Quenching was introduced by Kawarada [15] in 1975 when he studied the following reaction-diffusion equation with a nonlinear reaction term:

\[
\begin{align*}
 u_t - u_{xx} &= (1 - u)^{-1}, \quad x \in (0, L), \quad t > 0, \\
 u(x, 0) &= 0, \quad x \in [0, L], \\
 u(0, t) &= 0 = u(L, t), \quad t > 0.
\end{align*}
\] (1.1)

The solution \(u \) is increasing with respect to \(t \) on \((0, L)\). If at some \(t = t_q \), \(u(L/2, t_q) \) reaches 1, then \(u_t(L/2, t_q) \) becomes infinite due to the nonlinear term and (1.1) is not everywhere defined. As a consequence, \(u \) cannot be continued beyond \(t_q \). Based on the previous observation, a solution \(u \) quenches if there exists \(t_q \in (0, \infty) \) such that

\[
\sup_{0 \leq x \leq L} \{u_t(x, t)\} \to \infty \text{ as } t \to t_q.
\]

Chan and Kong [11] studied a similar problem and gave an equivalent definition as

\[
\sup_{0 \leq x \leq L} \{u(x, t)\} \to c^- \text{ as } t \to t_q.
\]

If \(t_q \) is finite, then \(u \) quenches in a finite time. Otherwise, \(u \) quenches in infinite time.

Quenching can be interpreted in various physical contexts, such as in gas combustion processes where the gas is compressed, causing its temperature to increase. At a certain
point, known as the autoignition point, the gas spontaneously ignites, further increasing its temperature significantly. In this case, the autoignition temperature can be considered the quenching point in the solution, where the solution undergoes an abrupt change in value due to the ignition. This phenomenon can result in a loss of regularity in the solution, as the sudden increase in temperature can cause a singularity in the equation being modeled.

1.1 Literature review

In 1976, Acker and Walter [2] studied the reaction-diffusion equation with a generalized reaction term as follows:

\[
\begin{align*}
 u_t - u_{xx} &= f(u), \quad x \in (-L, L), \quad t > 0, \\
 u(x, 0) &= 0, \quad x \in [-L, L], \\
 u(-L, t) &= 0 = u(L, t), \quad t > 0,
\end{align*}
\]

(1.2)

where \(f \) is locally Lipchitz continuous in the range of \(u \), \(f(0) > 0 \), and \(\lim_{u \to c^-} f(u) = \infty \) for some \(c > 0 \). Let \(L^* \) be the supremum of all \(L \) such that a steady-state solution to (1.2) exists. They found that if \(L > L^* \), the solution \(u \) quenches in a finite time; otherwise, \(u \) exists globally.

In 1994, Chan and Ke [10] expanded the previous works by studying what happens after a solution quenches in a finite time. To let the quenched solution continue past the first quenching time, they multiply the reaction term by the characteristic function \(\chi_S \) which acts as a switch to nullify \(f \) at the region where the solution has quenched. The resulting problem is as follows:

\[
\begin{align*}
 u_t - u_{xx} &= f(u)\chi_{\{u<c\}}(u), \quad x \in (0, L), \quad t \in (0, T], \\
 u(x, 0) &= 0, \quad x \in [0, L], \\
 u(0, t) &= 0 = u(L, t), \quad t \in (0, T],
\end{align*}
\]

(1.3)
where $L > 0$, $T \leq \infty$, $\chi_S(x) = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{if } x \notin S \end{cases}$ is the characteristic function of the set S, f is twice continuously differentiable on $[0, c)$ with $f(0) > 0$, $f' > 0$, $f'' \geq 0$ and $\lim_{u \to c^{-}} f(u) = \infty$. It was shown that, for L sufficiently large, weak solutions exist and tend to the unique solution of the following boundary value problems:

\[
\begin{align*}
W(x) &= c, \quad x \in (b^*_s, B^*_s), \\
-W''(x) &= f(W(x)), \quad x \in (0, b^*_s), \quad W(0) = 0, \quad W(b^*_s) = c, \\
-W''(x) &= f(W(x)), \quad x \in (B^*_s, L), \quad W(B^*_s) = c, \quad W(L) = 0,
\end{align*}
\]

where $b(t) = \inf \{x : u(x, t) = c\}$, $B(t) = \sup \{x : u(x, t) = c\}$, $b^*_s = \lim_{t \to \infty} b(t)$ and $B^*_s = \lim_{t \to \infty} B(t)$.

In 2018, Boonklurb et al. [6] studied the following singular convection-diffusion problem:

\[
\begin{align*}
\mathcal{L}u := u_t - u_{xx} - \frac{r}{x} u_x &= f(u)\chi_{\{u < c\}}(u), \quad x \in (0, L), \quad t \in (0, T], \\
\quad u(x, 0) &= 0, \quad x \in [0, L], \\
\quad u(0, t) &= 0 = u(L, t), \quad t \in (0, T],
\end{align*}
\]

where $0 < r < 1$, and all other variables defined in the same manner as in (1.3). For L sufficiently large, they arrived at conclusions similar to (1.4); however, the added singular term ru_x/x destroys the symmetry of the beyond quenching profile of (1.5) [9].

A number of physical phenomena involve the linear operator \mathcal{L}. For instance, when $0 \leq r \leq 2$, the operator represents heat conduction in geometric bodies with r being their shape parameters [9]. When r is a positive integer, it corresponds to radially symmetric diffusion in $r + 1$ dimensions [4]. In probability theory, the same operator describes a singular diffusion as a part of the Fokker-Planck equation and a radial component of a Brownian motion as a part of the Kolmogorov equation [3].
1.2 Research problem

In this thesis, we extend the previous works by studying the following singular convection-diffusion initial-boundary value problems (IBVP):

\[Lu = f(u)\chi_{\{u < c\}}(u) \text{ in } \Omega, \quad (1.6) \]

with the initial condition

\[u(x, 0) = 0 \text{ on } \bar{D}, \quad (1.7) \]

where \(D = (0, L), \Omega = D \times (0, T] \) and all other variables and functions are defined in the same manner as in (1.3).

We extend the previous work by Boonklurb et al. [6] to accommodate a wider range of radially symmetric systems by considering two other combinations of boundary conditions:

\[u(0, t) = 0 = u_x(L, t), \ t \in (0, T] \quad (1.8) \]

and

\[u_x(0, t) = 0 = u(L, t), \ t \in (0, T]. \quad (1.9) \]

We denote (1.6) – (1.8) as the Left IBVP and (1.6), (1.7), (1.9) as the Right IBVP. We multiply (1.6) by \(x^r \) to transform the singular term. The following formulation of (1.6) will be used for analysis throughout the thesis:

\[\mathcal{H}u := x^r u_t - (x^r u_x)_x = x^r f(u)\chi_{\{u < c\}}(u) \text{ in } \Omega. \]

Since this thesis focuses mainly on the beyond quenching profiles, we assume the existence of the weak solution to both IBVPs. One can use techniques demonstrated in [8, 12] along with the following assumptions:

\[f'(u) \left(\frac{c - u}{f(u)} \right)^2 \leq K_1 \quad \text{and} \quad \int_u^c f(s)ds \leq \min \{K_2(c - u)f(u), K_3(c - u)^\gamma\} \]
for $0 \leq u < c$, some positive constants K_1, K_2, K_3, and $\gamma \in (0, 2)$ to prove the existence of their weak solutions, which are defined as follows:

Definition 1.1. A function u is said to be a weak solution of either the Left IBVP or the Right IBVP if

(i) $u \in C([0, t_0]; L^1(D)) \cap L^\infty(D \times (0, t_0))$ for each $t_0 > 0$;

(ii) for any $v \in C^2,1(\bar{\Omega})$ such that v has a compact support with respect to t and $v(0, t) = 0 = v_x(L, t)$ for the Left IBVP or $v_x(0, t) = 0 = v(L, t)$ for the Right IBVP,

$$
\int_0^\infty \int_0^L u \mathcal{H} v dx dt + \int_0^\infty \int_0^L x^r f(u) \chi_{\{u < c\}}(u) v dx dt = 0
$$

where $\mathcal{H} := x^r \partial/\partial t + \partial/\partial x (x^r \partial/\partial x)$ is the adjoint operator of \mathcal{H}.

Remark 1.1. $C([0, t_0]; L^1(D))$ is the space of functions $g : [0, t_0] \to L^1(D)$ such that g is continuous on $[0, t_0]$.

In addition, one can manipulate the results of [14] to deduce the following properties of the weak solutions:

Theorem 1.1. Weak solutions u of the Left IBVP and the Right IBVP exist and possess the following properties:

(i) $u(x, t) \in C^2,1((x, t)|u(x, t) < c\}) \cap C^4,0(\Omega) \cap C(\bar{\Omega})$;

(ii) $u \leq c$ in Ω;

(iii) if $u(x, t_0) = c$ for some $x \in D$ and $t_0 \in [\tau, \infty)$, then $u(x, t) = c$ for $t \in [t_0, \infty)$, where τ is the first finite quenching time;

(iv) u is nondecreasing with respect to t in $\{(x, t)|u(x, t) < c\}$;

(v) $u_x = 0$ at the point (x, t) where $u(x, t) = c$.

1.3 **Thesis organization**

This thesis is organized as follows. Chapter II and Chapter III derive the beyond quenching profiles for the Left and Right IBVPs, respectively. In Chapter IV, a numerical method is developed to calculate the parameters that characterize the solution profiles from the preceding sections. Finally, Chapter V presents a discussion of the results and the thesis concludes with a summary of the findings.
CHAPTER II

QUENCHING PROFILE OF LEFT IBVP

Let \(L u = u_t - u_{xx} - (r/x)u_x \) and \(H u = x^r u_t - (x^r u_x)_x \) where \(0 < r < 1 \). We restate the Left IBVP as

\[
\begin{align*}
L u &= f(u) \chi_{\{u < c\}}(u) \text{ in } \Omega, \\
u(x, 0) &= 0, \quad x \in \bar{D}, \\
u(0, t) &= 0 = u_x(L, t), \quad t \in (0, T] \\
or \\
H u &= x^r f(u) \chi_{\{u < c\}}(u) \text{ in } \Omega, \\
u(x, 0) &= 0, \quad x \in \bar{D}, \\
u(0, t) &= 0 = u_x(L, t), \quad t \in (0, T],
\end{align*}
\]

(2.1)

where \(L > 0, \ T \leq \infty, \ D = (0, L), \ \Omega = D \times (0, T] \), and \(f \) is twice continuously differentiable on \([0, c]\) for some constant \(c \) with \(f(0) > 0, \ f' > 0, \ f'' \geq 0 \) and \(\lim_{u \to c^-} f(u) = \infty \).

In this chapter, we show that under the properties in Theorem 1.1, weak solutions of (2.1) converge uniformly to the unique solution of the following steady-state problem as \(t \) tends to infinity:

\[
\begin{align*}
W(x) &= c, \quad x \in [\ell_s^*, L], \\
-(x^r W'(x))' &= x^r f(W(x)), \quad x \in (0, \ell_s^*), \quad W(0) = 0, \ W(\ell_s^*) = c,
\end{align*}
\]

(2.2)

(2.3)

where \(\ell_s^* \) is a positive constant to be determined. Let \(u \) denote any weak solution of (2.1). We would like to study the behavior of \(u \) beyond the first quenching time.
2.1 Beyond quenching profile

Let \(\tau \) be the first finite time when quenching occurs. For \(t \geq \tau \), we define \(\ell(t) = \inf\{x : u(x, t) = c\} \) and \(\ell^* = \lim_{t \to \infty} \ell(t) \).

By manipulating the ideas of Lemma 2 and Lemma 6 of Chan and Ke [10], we arrive at Lemma 2.1.

Lemma 2.1. The function \(\ell(t) \) is nonincreasing and \(\ell^* \geq \ell^*_s > 0 \).

One physical interpretation of Lemma 2.1 is that, as time approaches infinity, the region within \(D \) where the temperature \(u \) approaches \(c \) from below should expand. This is because the Neumann boundary condition at \(x = L \) requires zero heat flux at that end, causing a buildup of heat that would eventually raise the temperature to the critical value \(c \) at that point. Meanwhile, the Dirichlet boundary condition at \(x = 0 \) constrains the temperature \(u \) to remain below \(c \) in a certain part of \(D \), preventing the critical temperature from being reached in that region. Therefore, the solution profile after the first quenching has occurred should separate into two segments demarcated by \(\ell^*_s \) as in Lemma 2.2 and Lemma 2.3.

From (ii) and (iv) in Theorem 1.1, we can use the Dini’s Theorem ([19], p.143) to deduce that \(u(x, t) \) converges uniformly to its continuous limit as \(t \to \infty \) on \(\bar{D} \) denoted by

\[
U(x) = \lim_{t \to \infty} u(x, t).
\]

Lemma 2.2. For \(x \in (0, \ell^*) \), \(u(x, t) \) converges uniformly to a solution of (2.3) as \(t \to \infty \) with \(\ell^* = \ell^*_s \).

Proof. We use the same idea presented in [6]. Consider \(u \) in the region \([0, \tilde{\ell}] \times (0, \infty)\) where \(\tilde{\ell} \in [0, \ell^*] \). We define

\[
F(x, t) = \int_0^{\tilde{\ell}} \xi^r G(x; \xi) u(\xi, t) d\xi \tag{2.4}
\]
where $G(x; \xi)$ is the Green’s function corresponding to (2.3) (see Appendix A1) with ℓ^*_s replaced by $\tilde{\ell}$:

$$
G(x; \xi) = \begin{cases}
\frac{x^{1-r}}{1-r} \left(1 - \left(\frac{x}{\xi} \right)^{1-r} \right) & \text{for } 0 \leq x < \xi, \\
\frac{\xi^{1-r}}{1-r} \left(1 - \left(\frac{x}{\tilde{\ell}} \right)^{1-r} \right) & \text{for } \xi < x \leq \tilde{\ell}.
\end{cases}
$$

We consider the time derivative of (2.4),

$$
F_t(x, t) = \frac{\partial}{\partial t} \int_{\tilde{\ell}}^{\ell} \xi^r G(x; \xi) u(\xi, t) \, d\xi.
$$

From (i) in Theorem 1.1 and the continuity of $G(x, \xi)$, we have, by the Leibniz integral rule ([16], p.422), that

$$
F_t(x, t) = \int_{\tilde{\ell}}^{\ell} \xi^r G(x; \xi) u(\xi, t) \, d\xi
= \int_{\tilde{\ell}} G(x; \xi)(\xi^r u(\xi, t)) \, d\xi + \int_{\tilde{\ell}}^{\ell} G(x; \xi) \xi^r f (u(\xi, t)) \, d\xi.
$$

Using Green’s formula ([18], p.167) and the properties of the Green’s function on the first term, we arrive at

$$
F_t(x, t) = \tilde{\ell}^r U(\tilde{\ell}) G(\xi; \tilde{\ell}) - u(x, t) + \int_{\tilde{\ell}}^{\ell} G(x; \xi) \xi^r f (u(\xi, t)) \, d\xi.
$$

Since f is increasing, it follows from the Monotone Convergence Theorem ([17], p.87) and the continuity of f that

$$
\lim_{t \to \infty} F_t(x, t) = \tilde{\ell}^r U(\tilde{\ell}) G(\xi; \tilde{\ell}) - U(x) + \int_{\tilde{\ell}}^{\ell} G(x; \xi) \xi^r f (U(\xi)) \, d\xi.
$$

According to (iv) in Theorem 1.1, we have from (2.5) that F is nondecreasing with respect to t. Furthermore, we have that

$$
\lim_{t \to \infty} F_t(x, t) \geq 0.
$$
Suppose that this limit were positive at some point \(x_0 \). \(F(x_0, t) \) would be nondecreasing, and \(\lim_{t \to \infty} F(x_0, t) = \infty \), which would contradict (ii) in Theorem 1.1. Therefore, the limit must be zero, and

\[
U(x) = \ell^r U(\ell) G_\ell(x; \ell) + \int_0^\ell G(x; \xi) \xi^r f(U(\xi)) \, d\xi
\]

\[
= c \left(\frac{x}{\ell} \right)^{1-r} + \int_0^\ell G(x; \xi) \xi^r f(U(\xi)) \, d\xi.
\]

Differentiating with respect to \(x \), we have that

\[
U'(x) = \left(\frac{1-x}{\ell-x} \right) c x^{-r} + \int_0^\ell G_x(x; \xi) \xi^r f(U(\xi)) \, d\xi.
\] (2.6)

By multiplying \(x^r \) and differentiating both sides of (2.6), we have

\[
- (x^r U'(x))' = \int_0^\ell (x^r G_x(x; \xi))_x \xi^r f(U(\xi)) \, d\xi
\]

\[
= \int_0^\ell \delta(x - \xi) \xi^r f(U(\xi)) \, d\xi
\]

\[
= x^r f(U(x)).
\]

Since \(\ell \) is arbitrary, and \(U \) is continuous on \(\bar{D} \), Lemma 2.2 is proven.

Lemma 2.3. For \(x \in [\ell^*, L] \), \(U(x) = c \).

Proof. Suppose that there exists \(x_0 \in [\ell^*, L] \) such that \(U(x_0) < c \). By the continuity of \(U \), there exists an interval \((x_1, x_2)\) with \(\ell^* < x_1 < x_0 < x_2 < L \) such that \(U(x_1) = c = U(x_2) \) and \(U(x) < c \) for all \(x \in (x_1, x_2) \). Since \(u_t \geq 0 \) for \(u < c \), we have \(u(x, t) < c \) in \(\{(x, t) : x \in (x_1, x_2) \text{ and } t > 0\} \). This implies that

\[
\mathcal{H}u = x^r f(u), \ x \in (x_1, x_2), \ t > 0.
\]

Let

\[
F(x, t) = \int_{x_1}^{x_2} \xi^r G(x; \xi) u(\xi, t) \, d\xi,
\]
where
\[
G(x; \xi) = \begin{cases}
\frac{x_1^{1-r} - x_1^{1-r}}{1-r} & \text{for } x_1 \leq x < \xi, \\
\frac{x_2^{1-r} - x_1^{1-r}}{x_2^{1-r} - x_1^{1-r}} & \text{for } \xi < x \leq x_2
\end{cases}
\]
is the Green’s function corresponding to the operator \(H\) with vanishing boundary conditions (see Appendix A2).

We use the same idea as Lemma 2.2 to compute \(F_t(x, t)\). Since \(u(x, t)\) is nondecreasing with respect to \(t\), it follows that \(F_t(x, t) \geq 0\). By direct calculation, we get
\[
F_t(x, t) = \left(\frac{x_1^{1-r} - x_1^{1-r}}{x_2^{1-r} - x_1^{1-r}}\right) u(x_1, t) - \left(\frac{x_1^{1-r} - x_1^{1-r}}{x_2^{1-r} - x_1^{1-r}}\right) u(x_2, t) - u(x, t)
+ \int_{x_1}^{x_2} G(x; \xi) \xi^r f(u(\xi, t)) d\xi.
\]
Because \(f\) is nondecreasing, it follows from the Monotone Convergence Theorem ([17], p.87), the continuity of \(f\), and \(U(x_1) = c = U(x_2)\) that
\[
\lim_{t \to \infty} F_t(x, t) = \left(\frac{x_2^{1-r} - x_1^{1-r}}{x_2^{1-r} - x_1^{1-r}}\right) U(x_1) - \left(\frac{x_1^{1-r} - x_1^{1-r}}{x_2^{1-r} - x_1^{1-r}}\right) U(x_2) - U(x)
+ \int_{x_1}^{x_2} G(x; \xi) \xi^r f(U(\xi)) d\xi.
\]
Suppose that the limit were strictly positive at some \(x_0 \in (x_1, x_2)\), since \(F\) is nondecreasing, as \(t\) tends to \(\infty\), \(F(x_0, t)\) would increase without bound, which would contradict the fact that \(F\) is bounded due to the boundedness of \(u\) as \(t \to \infty\). Therefore, \(\lim_{t \to \infty} F_t(x, t) = 0\), and
\[
U(x) = c + \int_{x_1}^{x_2} G(x; \xi) \xi^r f(U(\xi)) d\xi > c
\]
for all \(x \in (x_1, x_2)\). This contradicts Theorem 1.1 (ii). Therefore, Lemma 2.3 is proven.

\[\Box\]

Lemma 2.4. \(U'(\ell^*_s) = 0\)
Proof. Because \(u(x, t) \) converge uniformly to \(U(x) \) on \(\bar{D} \), by applying Theorem 1.1 (i) and (v), we obtain

\[
\lim_{(x, t) \to (t_*, \infty)} u_x(x, t) = 0.
\]

Therefore, \(U'(t_*) = 0 \), and we prove Lemma 2.4. \(\square \)

We modify the proof of Lemma 3.4 of Chan and Boonklurb [8], to prove the uniqueness of (2.3) resulting in Lemma 2.5.

Lemma 2.5. (2.3) has a unique solution.

Proof. Let \(W_1(x) \) and \(W_2(x) \) be two distinct solutions of (2.3) and \(Z(x) = W_1(x) - W_2(x) \). Consider

\[
- (x^r Z'(x))^r = x^r (f(W_1(x)) - f(W_2(x))).
\]

By the Mean Value Theorem ([1], p.155),

\[
- (x^r Z'(x))^r = x^r f'() Z(x)
\]

for some \(\theta \) between \(W_1(x) \) and \(W_2(x) \). Multiplying by \(x^r Z'(x) \) and integrating both sides from \(x \) to \(\ell_* \), we have

\[
\frac{(x^r Z'(x))^2}{2} + \frac{(x^r Z'(x))}{2} = \int_x^{\ell_*} \rho^2 f'() Z(\rho) Z'(\rho) d\rho.
\]

Since \(W_1'(\ell_*) = 0 = W_2'(\ell_*) \), \(Z'(\ell_*) = 0 \) and we have that

\[
\frac{(x^r Z'(x))^2}{2} = \int_x^{\ell_*} \rho^2 f'() Z(\rho) Z'(\rho) d\rho.
\]

(2.7)

Since \(Z(0) = 0 = Z(\ell_*) \), it follows from Rolle’s Theorem ([5], p.196) that there exists \(x_0 = \max\{x \in (0, \ell_*)|Z'(x) = 0\} \). Without loss of generality, we assume \(W_1(x) > W_2(x) \)
for all $x \in (x_0, \ell_s^*).$ Then, $Z(x) > 0$ and $Z'(x) < 0$ for all $x \in (x_0, \ell_s^*).$ Thus, from (2.7),

$$\frac{(x_r^0 Z'(x_0))^2}{2} = \int_{x_0}^{\ell_s^*} \rho^{2r} f'(\theta) Z(\rho) Z'(\rho) \, d\rho. \quad (2.8)$$

Since the left-hand side evaluates to zero, while the integrand is strictly negative, both sides of (2.8) are not equal. This contradiction proves Lemma 2.5.

From Lemma 2.2 to Lemma 2.4, we conclude the following

Theorem 2.1. As $t \to \infty,$ all weak solutions of (2.1) with the properties (i) and (iv) of Theorem 1.1 tend to the unique steady-state solution given by (2.2) and (2.3).

2.2 Bound for ℓ_s^*

We want to find an integral representation of $\ell_s^*.$ First, we multiply (2.3) by $x^r W'(x)$ and integrate from x to $\ell_s^*.$ Since $W'(\ell_s^*) = 0,$ we have

$$\frac{1}{2} \left(x^r W'(x) \right)^2 = \int_x^{\ell_s^*} \rho^{2r} f(\theta(\rho)) W'(\rho) \, d\rho.$$

From $W'(x) \geq 0$ for all $x \in [0, \ell_s^*],$ we have

$$\frac{1}{x^r} = \frac{1}{\sqrt{2}} \left(\int_x^{\ell_s^*} \rho^{2r} f(\theta(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x).$$

Hence,

$$\int_0^{\ell_s^*} \frac{1}{x^r} \, dx = \frac{1}{\sqrt{2}} \int_0^{\ell_s^*} \left(\int_x^{\ell_s^*} \rho^{2r} f(\theta(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx,$$

which gives

$$(\ell_s^*)^{1-r} = \frac{1-r}{\sqrt{2}} \int_0^{\ell_s^*} \left(\int_x^{\ell_s^*} \rho^{2r} f(\theta(\rho)) W'(\rho) \, d\rho \right)^{-\frac{3}{2}} W'(x) \, dx.$$
Therefore,

\[\ell_s^* = \left(\frac{1 - r}{\sqrt{2}} \int_0^{\ell_s^*} \left(\int_x^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx \right)^{\frac{1}{1 - r}}. \]

(2.9)

We want to find a lower bound of \(\ell_s^* \). Since \(\rho^{2r} \leq (\ell_s^*)^{2r} \), where \(\rho \in [x, \ell_s^*] \) and \(f(W(\rho)) W'(\rho) > 0 \), we have

\[\int_x^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \leq (\ell_s^*)^{2r} \int_x^{\ell_s^*} f(W(\rho)) W'(\rho) \, d\rho = (\ell_s^*)^{2r} \int_{W(x)}^{c} f(\eta) \, d\eta \]

which gives

\[\left(\int_x^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} \geq (\ell_s^*)^{-r} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}}. \]

Since \(W'(x) > 0 \), we obtain

\[\frac{1 - r}{\sqrt{2}} \int_0^{\ell_s^*} \left(\int_x^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx \geq \frac{1 - r}{\sqrt{2}(\ell_s^*)^r} \int_0^{\ell_s^*} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}} W'(x) \, dx. \]

From (2.9),

\[\ell_s^* \geq \left(\frac{1 - r}{\sqrt{2}(\ell_s^*)^r} \int_0^{\ell_s^*} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}} W'(x) \, dx \right)^{\frac{1}{1 - r}} \]

\[\geq \left(\frac{1 - r}{\sqrt{2}(\ell_s^*)^r} \int_0^{c} \left(\int_{\zeta}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}} \, d\zeta \right)^{\frac{1}{1 - r}}. \]

(2.10)

The value of \(\ell_s^* \) is critical in determining the beyond quenching steady-state solution profile, and is obtained by solving the nonlinear inequality (2.10). However, an exact value of \(\ell_s^* \) is often difficult to obtain analytically, and thus we provide a numerical method in
Chapter IV for computing its value for any given problem. This numerical method allows for a more accurate and efficient determination of ℓ^*_s than analytical methods alone, and is a crucial step in analyzing the long-term behavior of solutions to the semilinear parabolic partial differential equation under consideration.
CHAPTER III

QUENCHING PROFILE OF RIGHT IBVP

Similar to Chapter II, we let $L = u_t - u_{xx} - \left(\frac{r}{x}\right)u_x$ and $H = x^r u_t - (x^ru_x)_x$ where $0 < r < 1$. We restate the Right IBVP as

$$L = f(u)\chi_{\{u < c\}}(u) \text{ in } \Omega,$$

$$u(x, 0) = 0, \quad x \in \bar{D},$$

$$u_x(0, t) = 0 = u(L, t), \quad t \in (0, T],$$

or

$$H = x^r f(u)\chi_{\{u < c\}}(u) \text{ in } \Omega,$$

$$u(x, 0) = 0, \quad x \in \bar{D},$$

$$u_x(0, t) = 0 = u(L, t), \quad t \in (0, T],$$

(3.1)

where $L > 0$, $T \leq \infty$, $D = (0, L)$, $\Omega = D \times (0, T]$, and f is twice continuously differentiable on $[0, c)$ for some constant c with $f(0) > 0$, $f' > 0$, $f'' \geq 0$ and $\lim_{u \to c^-} f(u) = \infty$.

With similar techniques used in Chapter II, we show that under the properties in Theorem 1.1, weak solutions of (3.1) converge uniformly to the unique solution of the following steady-state problem as t tends to infinity:

$$W(x) = c, \quad x \in [0, \ell^*_s],$$

(3.2)

$$-(x^rW'(x))' = x^r f(W(x)), \quad x \in (\ell^*_s, L), \quad W(\ell^*_s) = c, W(L) = 0,$$

(3.3)

where ℓ^*_s is a positive constant to be determined. Let u denote any weak solution of (3.1). We would like to study the behavior of u beyond the first quenching time.
3.1 Beyond quenching profile

Let τ be the first finite time when quenching occurs. For $t \geq \tau$, we change the definition of $\ell(t)$ to be $\sup\{x : u(x, t) = c\}$ and $\ell^* = \lim_{t \to \infty} \ell(t)$.

By manipulating the ideas of Lemma 2 and Lemma 6 of Chan and Ke [10], we arrive at Lemma 3.1.

Lemma 3.1. The function $\ell(t)$ is nondecreasing and $\ell^* \leq \ell^*_s < L$.

Lemma 3.1 has a physical interpretation similar to that of Lemma 2.1; however, the switch in the boundary conditions at $x = 0$ and $x = L$ causes the solution to behave differently. In this case, the temperature u would reach the critical value c at $x = 0$, while the boundary condition at $x = L$ would prevent the temperature from reaching c over the entire length of D. This results in a quenching profile that is distinct from that of (2.1), as the critical point now occurs at the opposite end of the domain. Hence, the solution profile after the first quenching has occurred should separate into two segments demarcated by ℓ^*_s as in Lemma 3.2 and Lemma 3.3.

From (ii) and (iv) in Theorem 1.1, we can use the Dini’s Theorem ([19], p.143) to deduce that $u(x, t)$ converges uniformly to its continuous limit as $t \to \infty$ on \bar{D} denoted by

$$U(x) = \lim_{t \to \infty} u(x, t).$$

Lemma 3.2. For $x \in (\ell^*, L)$, $u(x, t)$ converges uniformly to a solution of (3.3) as $t \to \infty$ with $\ell^* = \ell^*_s$.

Proof. We modify the idea used in Lemma 2.2 to accommodate the changes in the boundary conditions. Consider u in the region $[\tilde{\ell}, L] \times (0, \infty)$ where $\tilde{\ell} \in [\ell^*, L]$. We define

$$F(x, t) = \int_{\ell}^{L} \xi^* G(x; \xi) u(\xi, t) \, d\xi$$

where $G(x; \xi)$ is the Green’s function corresponding to (3.3) (see Appendix A3) with ℓ^*_s.
replaced by \(\tilde{\ell} \):

\[
G(x; \xi) = \begin{cases}
\left(\frac{x^{1-r} - \tilde{\ell}^{1-r}}{1-r} \right) & \text{for } \tilde{\ell} \leq x < \xi, \\
\left(\frac{L^{1-r} - \xi^{1-r}}{L^{1-r} - \tilde{\ell}^{1-r}} \right) & \text{for } \xi < x \leq L.
\end{cases}
\]

We consider the time derivative of (3.4),

\[
F_t(x, t) = \frac{\partial}{\partial t} \int_{\tilde{\ell}}^{L} \xi^r G(x; \xi) u(\xi, t) \, d\xi.
\]

From (i) in Theorem 1.1 and the continuity of \(G(x, \xi) \), we have, by the Leibniz integral rule ([16], p.422), that

\[
F_t(x, t) = \int_{\tilde{\ell}}^{L} \xi^r G(x; \xi) u_t(\xi, t) \, d\xi
= \int_{\tilde{\ell}}^{L} G(x; \xi) (\xi^r u(\xi, t))' \, d\xi + \int_{\tilde{\ell}}^{L} G(x; \xi) \xi^r f(u(\xi, t)) \, d\xi.
\]

Using Green’s formula ([18], p.167) and the properties of the Green’s function on the first term, we arrive at

\[
F_t(x, t) = \tilde{\ell}^r u(\tilde{\ell}, t) G(\tilde{\ell}; \tilde{\ell}) - u(x, t) + \int_{\tilde{\ell}}^{L} G(x; \xi) \xi^r f(u(\xi, t)) \, d\xi.
\]

Since \(f \) is increasing, it follows from the Monotone Convergence Theorem ([17], p.87) and the continuity of \(f \) that

\[
\lim_{t \to \infty} F_t(x, t) = \tilde{\ell}^r U(\tilde{\ell}) G(\tilde{\ell}; \tilde{\ell}) - U(x) + \int_{\tilde{\ell}}^{L} G(x; \xi) \xi^r f(U(\xi)) \, d\xi.
\]

According to (iv) in Theorem 1.1, we have from (3.5) that \(F \) is nondecreasing with respect to \(t \). Furthermore, we have that

\[
\lim_{t \to \infty} F_t(x, t) \geq 0.
\]
Suppose that this limit were positive at some point x_0. $F(x_0, t)$ would be nondecreasing, and $\lim_{t \to \infty} F(x_0, t) = \infty$, which would contradict (ii) in Theorem 1.1. Therefore, the limit must be zero, and we have

$$U(x) = \tilde{\ell}^r U(\tilde{\ell}) G_\xi(x; \tilde{\ell}) + \int_\ell^L G(x; \xi) \xi^r f(U(\xi)) \, d\xi$$

$$= c \left(\frac{L^{1-r} - x^{1-r}}{L^{1-r} - \tilde{\ell}^{1-r}} \right) + \int_\ell^L G(x; \xi) \xi^r f(U(\xi)) \, d\xi.$$

Differentiating with respect to x, we have that

$$U'(x) = \left(\frac{r - 1}{L^{1-r} - \tilde{\ell}^{1-r}} \right) c x^{-r} + \int_\ell^L G_x(x; \xi) \xi^r f(U(\xi)) \, d\xi. \quad (3.6)$$

By multiplying x^r and differentiating both sides of (3.6), we have

$$-(x^r U'(x))' = \int_\ell^L - (x^r G_x(x; \xi))_x \xi^r f(U(\xi)) \, d\xi$$

$$= \int_\ell^L \delta(x - \xi) \xi^r f(U(\xi)) \, d\xi$$

$$= x^r f(U(x)).$$

Since $\tilde{\ell}$ is arbitrary, and U is continuous on \bar{D}, Lemma 3.2 is proven.

Lemma 3.3. For $x \in [\ell^*, L], U(x) = c$.

Proof. Suppose that there exists $x_0 \in [0, \ell^*]$ such that $U(x_0) < c$. By the continuity of U, there exists an interval (x_1, x_2) with $0 < x_1 < x_0 < x_2 < \ell^*$ such that $U(x_1) = c = U(x_2)$ and $U(x) < c$ for all $x \in (x_1, x_2)$.

The remaining part of the proof of Lemma 3.3 is identical to that of Lemma 2.3.

Lemma 3.4. $U'(\ell^*) = 0$.

Proof. The proof of Lemma 3.4 is identical to that of Lemma 2.4.
We modify the proof of Lemma 3.4 of Chan and Boonklurb [8], to prove the uniqueness of (3.3) resulting in Lemma 3.5.

Lemma 3.5. (3.3) has a unique solution.

Proof. We use the same idea presented in the proof of Lemma 2.5 with some changes in the limits of integrations. Let \(W_1(x) \) and \(W_2(x) \) be two distinct solutions of (3.3) and \(Z(x) = W_1(x) - W_2(x) \). Consider

\[
-x^r Z'(x) = x^r (f(W_1(x)) - f(W_2(x))).
\]

By the Mean Value Theorem ([1], p.155),

\[
-x^r Z'(x) = x^r f'(\theta) Z(x)
\]

for some \(\theta \) between \(W_1(x) \) and \(W_2(x) \). Multiplying by \(x^r Z'(x) \) and integrating both sides from \(\ell_s^* \) to \(x \), we have

\[
\frac{(\ell_s^*)^r Z'(\ell_s^*))^2}{2} - \frac{(x^r Z'(x))^2}{2} = \int_{\ell_s^*}^{x} \rho^2 x^r f'(\theta) Z(\rho) Z'(\rho) \, d\rho.
\]

Since \(W_1'(\ell_s^*) = 0 = W_2'(\ell_s^*) \), \(Z'(\ell_s^*) = 0 \) and we have that

\[
\frac{(x^r Z'(x))^2}{2} = - \int_{\ell_s^*}^{x} \rho^2 x^r f'(\theta) Z(\rho) Z'(\rho) \, d\rho. \tag{3.7}
\]

Since \(Z(\ell_s^*) = 0 = Z(L) \), it follows from Rolle’s Theorem ([5], p.196) that there exists \(x_0 = \min\{x \in (\ell_s^*, L) | Z'(x) = 0\} \). Without loss of generality, we assume \(W_1(x) > W_2(x) \) for all \(x \in (\ell_s^*, x_0) \). Then, \(Z(x) > 0 \) and \(Z'(x) > 0 \) for all \(x \in (\ell_s^*, x_0) \). Thus, from (3.7),

\[
\frac{(x^r Z'(x_0))^2}{2} = - \int_{\ell_s^*}^{x_0} \rho^2 x^r f'(\theta) Z(\rho) Z'(\rho) \, d\rho. \tag{3.8}
\]

Since the left-hand side evaluates to zero, while the integrand is strictly positive, both sides of (3.8) are not equal. This contradiction proves Lemma 3.5. \(\square\)
From Lemma 3.2 to Lemma 3.4, we conclude the following

Theorem 3.1. As \(t \to \infty \), all weak solutions of (3.1) with the properties (i) and (iv) of Theorem 1.1 tend to the unique steady-state solution given by (3.2) and (3.3).

3.2 Bound for \(\ell_s^* \)

We use a similar technique in Section 2.2 to find an integral representation of \(\ell_s^* \).

First, we multiply (3.3) by \(x^{r}W'(x) \) and integrate from \(\ell_s^* \) to \(x \). Since \(W'(\ell_s^*) = 0 \), we have

\[
\frac{1}{2} (x^{r}W'(x))^2 = -\int_{\ell_s^*}^{x} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho
\]

\[
= \int_{x}^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho.
\]

From \(W'(x) \leq 0 \) for all \(x \in [\ell_s^*, L] \), we have

\[
\frac{1}{x^{r}} = -\frac{1}{\sqrt{2}} \left(\int_{x}^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x).
\]

Hence,

\[
\int_{L}^{\ell_s^*} \frac{1}{x^{r}} \, dx = -\frac{1}{\sqrt{2}} \int_{L}^{\ell_s^*} \left(\int_{x}^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx,
\]

which gives

\[
(\ell_s^*)^{1-r} = L^{1-r} + \frac{r - 1}{\sqrt{2}} \int_{L}^{\ell_s^*} \left(\int_{x}^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx.
\]

Therefore,

\[
\ell_s^* = \left(L^{1-r} + \frac{r - 1}{\sqrt{2}} \int_{L}^{\ell_s^*} \left(\int_{x}^{\ell_s^*} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx \right)^{\frac{1}{1-r}}.
\] (3.9)
We want to find an upper bound of ℓ^*_s. Since $\rho^{2r} \leq x^{2r}$, where $\rho \in [\ell^*_s, x]$ and $-f(W(\rho))W'(\rho) > 0$, we have

$$
\int_{x}^{\ell^*_s} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \leq x^{2r} \int_{x}^{\ell^*_s} f(W(\rho)) W'(\rho) \, d\rho
$$

which gives

$$
\left(\int_{x}^{\ell^*_s} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} \geq x^{-r} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}}.
$$

For $x \in [\ell^*_s, L]$, we have that $x^{-r} \geq L^{-r}$, and

$$
\left(\int_{x}^{\ell^*_s} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} \geq L^{-r} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}}.
$$

Since $W'(x) < 0$, we obtain

$$
L^{1-r} + \frac{r-1}{\sqrt{2L}} \int_{L}^{\ell^*_s} \left(\int_{x}^{\ell^*_s} \rho^{2r} f(W(\rho)) W'(\rho) \, d\rho \right)^{-\frac{1}{2}} W'(x) \, dx
\leq L^{1-r} + \frac{r-1}{\sqrt{2L}} \int_{L}^{\ell^*_s} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}} W'(x) \, dx.
$$

From (3.9),

$$
\ell^*_s \leq \left(L^{1-r} + \frac{r-1}{\sqrt{2L}} \int_{L}^{\ell^*_s} \left(\int_{W(x)}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}} W'(x) \, dx \right)^{\frac{1}{1-r}}
\leq L \left(1 + \frac{r-1}{\sqrt{2L}} \int_{0}^{c} \left(\int_{\xi}^{c} f(\eta) \, d\eta \right)^{-\frac{1}{2}} \, d\xi \right)^{\frac{1}{1-r}}. \quad (3.10)
$$

While the bound of ℓ^*_s can be obtained readily by evaluating (3.10), an exact value is needed to determine the beyond quenching steady-state solution profile. Therefore, we provide a numerical method for computing the exact value of ℓ^*_s for any given problem.
in Chapter IV. This numerical method is a crucial tool for accurately analyzing the long-term behavior of solutions to the semilinear parabolic partial differential equation under consideration.
CHAPTER IV

NUMERICAL METHOD FOR QUENCHING PROFILES

In Chapter II, we derived the steady-state problem of the Left IBVP. The results are restated as follows:

\[W(x) = c, \quad x \in [\ell^*_s, L], \]
\[-(x^rW'(x))' = x^r f(W(x)), \quad x \in (0, \ell^*_s), \quad (4.1) \]
\[W(0) = 0, W(\ell^*_s) = c. \quad (4.2) \]

Similarly, in Chapter III, we derived the steady-state problem of the Right IBVP restated as follows:

\[W(x) = c, \quad x \in [0, \ell^*_s], \]
\[-(x^rW'(x))' = x^r f(W(x)), \quad x \in (\ell^*_s, L), \quad (4.3) \]
\[W(\ell^*_s) = c, W(L) = 0. \quad (4.4) \]

In both problems, one must determine the value of the positive constant \(\ell^*_s \) before beyond quenching profiles can be obtained. Therefore, in this chapter, we provide a method to numerically compute the value of \(\ell^*_s \) for both problems.

To find an approximate value of \(\ell^*_s \) for each problem, we use an iterative method to generate a sequence of \(\ell \)'s in the interval \([0, L]\) that converges to the true value. For each \(\ell \) in the sequence, we solve the corresponding boundary-value problem using either (4.1) and (4.2) or (4.3) and (4.4). Depending on which problem, we observe that values of \(\ell \) closer to one end of the domain can yield divergent results. Using this observation, we initialize \(\ell \) to the value at the divergent end and use the bisection method to update its
value so that the final \(\ell \) is as close to the divergent end as possible while still producing a convergent solution.

4.1 Boundary value problem discretization

Consider (4.1) and (4.3) with their domains replaced by \((x_L, x_R)\) where \(0 \leq x_L < x_R \leq L\),

\[
-(x^r W'(x))' = x^r f(W(x)), \quad x \in (x_L, x_R).
\]

(4.5)

We first expand the derivative terms and express (4.5) in a more compact form:

\[
W'' + \frac{r}{x} W' + f(W) = 0.
\]

(4.6)

Because the geometry of the domain is regular and by the continuity of \(u \) in Theorem 1.1 (i), we choose the finite-difference method (FDM) to discretize (4.6).

First, we partition \([x_L, x_R]\) uniformly into \(N\) subintervals of width \(\Delta\). Then, we have

\[
x_i = x_L + i\Delta = x_L + i \left(\frac{x_R - x_L}{N} \right) \quad \text{for } i \in \{0, 1, 2, ..., N\}.
\]

(4.7)

For \(i \in \{1, 2, 3, ..., N - 1\}\), we have from the Taylor's theorem [7] that

\[
W'(x_i) = \frac{1}{2\Delta} (W(x_{i+1}) - W(x_{i-1})) + \frac{\Delta^2}{6} W''(\eta_i)
\]

(4.8)

and

\[
W''(x_i) = \frac{1}{\Delta^2} (W(x_{i+1}) - 2W(x_i) + W(x_{i-1})) - \frac{\Delta^2}{12} W^{(4)}(\xi_i)
\]

(4.9)

for some \(\eta_i\) and \(\xi_i\) in \((x_{i-1}, x_{i+1})\). Substituting (4.8) and (4.9) into (4.6), we have

\[
\left(\frac{1}{\Delta^2} + \frac{r}{2x_i\Delta} \right) W(x_{i+1}) - \frac{2}{\Delta^2} W(x_i) + \left(\frac{1}{\Delta^2} - \frac{r}{2x_i\Delta} \right) W(x_{i-1}) + f(W(x_i)) + O(\Delta^2) = 0
\]
Let w_i be an approximation to $W(x_i)$ and define

$$\gamma_i = \frac{1}{\Delta^2} + \frac{r}{2x_i \Delta} \quad \text{and} \quad \bar{\gamma}_i = \frac{1}{\Delta^2} - \frac{r}{2x_i \Delta}.$$

We arrive at the finite-difference approximation of (4.6) as follows

$$\gamma_i w_{i+1} - (\gamma_i + \bar{\gamma}_i)w_i + \bar{\gamma}_i w_{i-1} + f(w_i) = 0 \quad (4.10)$$

which we will use for numerically solving (4.1) and (4.2) or (4.3) and (4.4) in subsequent sections.

4.2 Numerical method for the Left IBVP

For a given value of ℓ, we create grid points by (4.7) with x_L replaced by 0 and x_R replaced by ℓ:

$$x_i = \ell \left(\frac{i}{N} \right) \quad \text{for} \ i \in \{0, 1, 2, ..., N\}.$$

We define w to be the vector of values of the solution at the internal grid points:

$$w = \begin{bmatrix} w_1 & w_2 & w_3 & \ldots & w_{N-1} \end{bmatrix}^T \quad (4.11)$$

with $w_0 = 0$ and $w_N = c$ from the boundary conditions (4.2).

From the left-hand side of (4.10), let

$$F_1(w) = \gamma_1 w_2 - (\gamma_1 + \bar{\gamma}_1)w_1 + f(w_1),$$

$$F_{N-1}(w) = c\gamma_{N-1} - (\gamma_{N-1} + \bar{\gamma}_i)w_{N-1} + \bar{\gamma}_{N-1} w_{N-2} + f(w_{N-1}) \quad (4.13)$$

and

$$F_i(w) = \gamma_i w_{i+1} - (\gamma_i + \bar{\gamma}_i)w_i + \bar{\gamma}_i w_{i-1} + f(w_i) \quad (4.14)$$
for $i \in \{2, 3, 4, ..., N - 2\}$. Furthermore, we let

$$F(w) = \begin{bmatrix} F_1(w) & F_2(w) & F_3(w) & \cdots & F_{N-1}(w) \end{bmatrix}^T.$$

Then, we must solve the system of algebraic equations

$$F(w) = 0$$

(4.15)

to obtain the solutions on the grid points. Since f contributes to non-linearity in (4.15), we use Newton’s method to solve the root-finding problem.

Let J be the Jacobian matrix of F. We have

$$J(w) = \begin{bmatrix} \frac{\partial F_1}{\partial w_1} & \frac{\partial F_1}{\partial w_2} & \frac{\partial F_1}{\partial w_3} & \cdots & \frac{\partial F_1}{\partial w_{N-1}} \\
\frac{\partial F_2}{\partial w_1} & \frac{\partial F_2}{\partial w_2} & \frac{\partial F_2}{\partial w_3} & \cdots & \frac{\partial F_2}{\partial w_{N-1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{N-1}}{\partial w_1} & \frac{\partial F_{N-1}}{\partial w_2} & \frac{\partial F_{N-1}}{\partial w_3} & \cdots & \frac{\partial F_{N-1}}{\partial w_{N-1}} \end{bmatrix}.$$

(4.16)

By computing the derivatives of (4.12) – (4.14), we have each element of J as

$$J_{ij} = \begin{cases} \frac{\partial F_i}{\partial w_i} - \bar{\gamma}_i & \text{if } j = i - 1, \\
\frac{\partial F_i}{\partial w_i} = - (\gamma_i + \bar{\gamma}_i) + f'(w_i) & \text{if } j = i, \\
\frac{\partial F_i}{\partial w_{i+1}} = \gamma_i & \text{if } j = i + 1, \\
0 & \text{otherwise} \end{cases}$$

for $i, j \in \{1, 2, 3, ..., N - 1\}$. We want to generate a sequence of w’s which converges to a root of (4.15).

Let $w^{(k)}$ denote the k-th element in the sequence. Then, we construct the consecutive elements by

$$w^{(k+1)} = w^{(k)} - J^{-1}(w^{(k)}) F(w^{(k)}) \quad \text{for } k \in \{0, 1, 2, 3, \ldots\},$$

(4.17)

where we choose $w^{(0)}$ to be a linear function satisfying (4.2). Each component of $w^{(0)}$ is
given by
\[w_i^{(0)} = c \left(\frac{x_i}{\ell} \right) \quad \text{for } i \in \{1, 2, 3, ..., N-1\}. \]

For a specified tolerance \(\epsilon \), if \(\|w^{(K+1)} - w^{(K)}\| < \epsilon \) for some \(K \), then we terminate and check whether \(w^{(K+1)} \in \mathbb{R}^{N-1} \). If the condition is true, we have that the current value of \(\ell \) yields a convergent solution.

Let \(\ell^{(m)} \) denote the value of \(\ell \) at the \(m \)-th iteration. Then, we update the value of \(\ell \) by using the bisection method where
\[
\ell^{(m+1)} = \begin{cases}
\frac{\ell^{(m)} + L}{2} & \text{if } \ell^{(m)} \text{ gives a convergent solution,} \\
\ell^{(m)} \frac{2}{2} & \text{otherwise}
\end{cases}
\]
for \(m \in \{0, 1, 2, 3, \ldots\} \). From Lemma 2.1, we know that the value of \(\ell^* \) is closer to 0 on \(D \); therefore, we initialize \(\ell \) to be \(L \). Suppose that \(\ell^{(M)} \) gives a convergent solution for some \(M \). For a specified tolerance \(\omega \), if \(|\ell^{(M+1)} - \ell^{(M)}| < \omega \), then we terminate. If \(\ell^{(M+1)} \) gives a convergent result, we use \(\ell^{(M+1)} \) as an approximation of \(\ell^* \); otherwise, use \(\ell^{(M)} \) as the approximation. The algorithm for the Left IBVP is summarized as follows

Algorithm 1 Pseudocode for numerically compute \(\ell^* \) (Left IBVP)

Input: \(\{f, c, r, L\}, \{N, \epsilon, \omega\} \)

Output: \(\ell^* \)

1: \(\ell \leftarrow L \)
2: LEFT \(\leftarrow 0 \), RIGHT \(\leftarrow L \)
3: \(\delta \leftarrow \text{RIGHT} - \text{LEFT} \)
4: while \(\delta \geq \omega \) do
5: \(\ell_{\text{prev}} \leftarrow \ell \)
6: \(w \leftarrow \text{FDM}(f, c, r, L, \ell, \ell, N, \epsilon) \)
7: if \(w \) is divergent then
8: \(\text{RIGHT} \leftarrow \ell \)
9: else
10: \(\text{LEFT} \leftarrow \ell \)
11: \(\ell_{\text{conv}} \leftarrow \ell \)
12: end if
13: \(\ell \leftarrow (\text{LEFT} + \text{RIGHT})/2 \)
14: \(\delta \leftarrow |\ell - \ell_{\text{prev}}| \)
15: end while
16: return \(\ell_{\text{conv}} \) as \(\ell^* \)
4.3 Numerical method for the Right IBVP

The numerical method for the Right IBVP is largely the same as the previous section. We discuss the differences in their calculations.

For a given value of ℓ, we create grid points by (4.7) with x_L replaced by ℓ and x_R replaced by L:

$$x_i = \ell + i \left(\frac{L - \ell}{N} \right) \quad \text{for} \quad i \in \{0, 1, 2, ..., N\}.$$

The vector w is defined in the same manner as (4.11), but the values at the boundary points are switched: $w_0 = c$ and $w_N = 0$, according to the boundary conditions (4.4). Due to this fact, (4.12) and (4.13) need to be redefined as follows:

$$F_1(w) = \gamma_1 w_2 - (\gamma_1 + \bar{\gamma}_1)w_1 + c\bar{\gamma}_1 + f(w_1)$$

and

$$F_{N-1}(w) = -(\gamma_{N-1} + \bar{\gamma}_{N-1})w_{N-1} + \bar{\gamma}_{N-1}w_{N-2} + f(w_{N-1}).$$

Then, we employ Newton’s method to solve (4.15) by computing J as (4.16) and generate a sequence of vectors w’s according to (4.17). However, we choose $w^{(0)}$ to be a linear function satisfying (4.4). Each component of $w^{(0)}$ is given by

$$w_i^{(0)} = c \left(1 - \frac{x_i - \ell}{L - \ell} \right) \quad \text{for} \quad i \in \{1, 2, 3, ..., N-1\}.$$

For a specified tolerance ϵ, if $\|w^{(K+1)} - w^{(K)}\| < \epsilon$ for some K, then we terminate and check whether $w^{(K+1)} \in \mathbb{R}^{N-1}$. If the condition is true, we have that the current value of ℓ yields a convergent solution.

Let $\ell^{(m)}$ denote the value of ℓ at the m-th iteration. Then, we update the value of
ℓ by using the bisection method where
\[
\ell^{(m+1)} = \begin{cases}
\frac{\ell^{(m)}}{2} & \text{if } \ell^{(m)} \text{ gives a convergent solution,} \\
\frac{\ell^{(m)} + L}{2} & \text{otherwise}
\end{cases}
\]
for \(m \in \{0, 1, 2, 3, \ldots\}\). From Lemma 3.1, we know that the value of \(\ell^*_s\) is closer to \(L\) on \(D\); therefore, we initialize \(\ell\) to be 0. Suppose that \(\ell^{(M)}\) gives a convergent solution for some \(M\). For a specified tolerance \(\omega\), if \(|\ell^{(M+1)} - \ell^{(M)}| < \omega\), then we terminate. If \(\ell^{(M+1)}\) gives a convergent result, we use \(\ell^{(M+1)}\) as an approximation of \(\ell^*_s\); otherwise, use \(\ell^{(M)}\) as the approximation. The algorithm for the Right IBVP is summarized as follows:

Algorithm 2 Pseudocode for numerically compute \(\ell^*_s\) (Right IBVP)

Input: \(\{f, c, r, L\}, \{N, \epsilon, \omega\}\)
Output: \(\ell^*_s\)

1: \(\ell \leftarrow 0\)
2: LEFT \(\leftarrow 0\), RIGHT \(\leftarrow L\)
3: \(\delta \leftarrow \text{RIGHT} - \text{LEFT}\)
4: while \(\delta \geq \omega\) do
5: \(\ell_{\text{prev}} \leftarrow \ell\)
6: \(w \leftarrow \text{FDM}(f, c, r, L, \ell, N, \epsilon)\)
7: if \(w\) is divergent then
8: \(\text{LEFT} \leftarrow \ell\)
9: else
10: \(\text{RIGHT} \leftarrow \ell\)
11: \(\ell_{\text{conv}} \leftarrow \ell\)
12: end if
13: \(\ell \leftarrow (\text{LEFT} + \text{RIGHT})/2\)
14: \(\delta \leftarrow |\ell - \ell_{\text{prev}}|\)
15: end while
16: return \(\ell_{\text{conv}}\) as \(\ell^*_s\)

4.4 Demonstrations

In this section, we illustrate the practical application of the numerical methods developed in the preceding sections through two examples. First, we consider the source function \(f(u) = (1-u)^{-\beta}\) and simulate its behavior for various values of \(r, L, \text{ and } \beta\) in Example 4.1. Then, in Example 4.2, we investigate the source function \(f(u) = \alpha - \beta \ln (1-u)\) using a similar approach as in the previous example.
We have developed a Python program (see Appendix B1 – B3) to compute ℓ_\ast for both examples. If necessary, one can modify some parts of the program to simulate other nonlinear functions in the future.

Example 4.1. We consider the source function $f(u) = (1 - u)^{-\beta}$ where $0 < \beta < 1$. We have that $f(0) = 1$, $f'(u) = \beta(1 - u)^{-\beta - 1} > 0$, $f''(u) = \beta(\beta + 1)(1 - u)^{-\beta - 2} > 0$, and $\lim_{u \to 1^-} f(u) = \infty$.

To compute a lower bound of ℓ_\ast in case of the Left IBVP, we refer to (2.10). The integral term can be computed as follows:

$$
\int_0^1 \left(\int_\zeta^1 f(\eta) \, d\eta \right)^{-\frac{1}{2}} \, d\zeta = \sqrt{1 - \beta} \int_0^1 (1 - \zeta)^{\frac{\beta + 1}{1 + \beta}} \, d\zeta = \frac{2\sqrt{1 - \beta}}{1 + \beta}.
$$

(4.18)

Then, we have

$$
\ell_\ast \geq \left(\frac{(1 - r)\sqrt{2(1 - \beta)}}{\ell_\ast^r(1 + \beta)} \right)^{\frac{1}{1 - r}}.
$$

(4.19)

Similarly, we refer to (3.10) for the Right IBVP. With the integral term in (4.18), we have that

$$
\ell_\ast \leq L \left(1 + \frac{(r - 1)\sqrt{2(1 - \beta)}}{L(1 + \beta)} \right)^{\frac{1}{1 - r}}.
$$

(4.20)

The following table summarizes the numerical approximations of ℓ_\ast for different values of r, β, and L for the Left and the Right IBVPs with $N = 100$ and $\epsilon = \omega = 1 \times 10^{-6}$.

...
One can easily verify that all the values of ℓ^*_s in Table 4.1, with their corresponding values of r, β and L, satisfy (4.19) and (4.20) for the Left and the Right IBVPs, respectively.
Figure 4.1: Steady-state solution profiles for (a) Left IBVP and (b) Right IBVP where $r = 1/5$, $L = 5$ and $f(u) = (1 - u)^{-1/3}$.

Example 4.2. We consider the source function $f(u) = \alpha - \beta \ln(1 - u)$ where $\alpha, \beta > 0$. We have that $f(0) = \alpha$, $f'(u) = \beta/(1-u) > 0$, $f''(u) = (1-u)^2 > 0$, and $\lim_{u \to 1^-} f(u) = \infty$.

Similar to the previous example, we compute a lower bound of ℓ^*_s in case of the Left IBVP by referring to (2.10). The integral term can be computed as follows:

$$\int_0^1 \left(\int_0^1 f(\eta) \, d\eta \right)^{-\frac{1}{2}} \, \frac{d\zeta}{\sqrt{(1 - \zeta)(\alpha + \beta - \beta \ln(1 - \zeta))}} = \int_0^1 \left(\sqrt{(1 - \zeta)(\alpha + \beta - \beta \ln(1 - \zeta))} \right)^{-1} \, d\zeta. \quad (4.21)$$

Then, we have

$$\ell^*_s \geq \left(\frac{1 - r}{(\ell^*_s)^{r}} \right) \int_0^1 \left(\sqrt{(1 - \zeta)(\alpha + \beta - \beta \ln(1 - \zeta))} \right)^{-1} \, d\zeta \right)^{\frac{1}{1-r}}. $$

Similarly, we refer to (3.10) for the Right IBVP. With the integral term in (4.21), we have that

$$\ell^*_s \leq L \left(1 + \frac{r - 1}{L} \right) \int_0^1 \left(\sqrt{(1 - \zeta)(\alpha + \beta - \beta \ln(1 - \zeta))} \right)^{-1} \, d\zeta \right)^{\frac{1}{1-r}}.$$

The following table summarizes the numerical approximations of ℓ^*_s for different values of r, α, β, and L for Left and the Right IBVPs with $N = 100$ and $\epsilon = \omega = 1 \times 10^{-6}$.

Table: Numerical approximations of ℓ^*_s for different values of parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Left IBVP</th>
<th>Right IBVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>α</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>β</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>L</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>ϵ</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>ω</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>r</td>
<td>α</td>
<td>β</td>
<td>L</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/7</td>
<td>1</td>
<td>1/4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1/5</td>
<td>1</td>
<td>1/4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4.2: Numerical approximations of ℓ^*_s for $f(u) = \alpha - \beta \ln (1 - u)$
Figure 4.2: Steady-state solution profiles for (a) Left IBVP and (b) Right IBVP where $r = 1/5$, $L = 5$ and $f(u) = 1 - \ln (1 - u)$.
CHAPTER V

CONCLUSION

This thesis investigated the singular convection-diffusion problems with mixed boundary conditions. Specifically, we focused on studying the beyond quenching steady-state solution profiles for the following problems:

\[u_t - u_{xx} - \frac{r}{x} u_x = f(u)\chi_{\{u < c\}}(u) \text{ in } \Omega, \]
\[u(x, 0) = 0 \text{ on } \bar{D} \]

subject to the mixed boundary conditions:

\[u(0, t) = 0 = u_x(L, t) \text{ for } 0 < t < T \quad \text{(Left IBVP)} \]
or
\[u_x(0, t) = 0 = u(L, t) \text{ for } 0 < t < T \quad \text{(Right IBVP)} \]

where \(0 < r < 1, L > 0, T \leq \infty, D = (0, L), \Omega = D \times (0, T), \chi_S\) is the characteristic function of the set \(S\) and \(f\) is a twice continuously differentiable function on \([0, c)\), for some constant \(c\), with \(f(0) > 0, f' > 0, f'' \geq 0\) and \(\lim_{u \to c-} f(u) = \infty\).

With some conditions on \(f\), we assumed that classical solutions to both problems exist before quenching, and weak solutions exist after quenching.

We proved that all weak solutions of the Left IBVP tend to the unique of solution of the steady-state problem:

\[W(x) = c, \quad x \in [\ell_s^*, L], \]
\[-(x^r W'(x))' = x^r f(W(x)), \quad x \in (0, \ell_s^*), \quad W(0) = 0, W(\ell_s^*) = c. \]

Using a similar approach, we found that all weak solutions of the the Right IBVP tend
to the unique of solution of the steady-state problem:

\[W(x) = c, \ x \in [0, \ell^*_s], \]

\[-(x^rW'(x))' = x^r f(W(x)), \ x \in (\ell^*_s, L), \ W(\ell^*_s) = c, W(L) = 0.\]

The key factor in determining the beyond quenching profiles is the parameter \(\ell^*_s \). We established integral representations of \(\ell^*_s \) and provided a lower and an upper bounds for the Left and the Right IBVPs, respectively.

Although explicit calculations of \(\ell^*_s \) are not feasible due to the dependence on the function \(f \), we developed a numerical method to approximate its value for any \(f \) that satisfies the aforementioned conditions. Two examples were used to illustrate the use of these numerical methods, and we demonstrated how the elongation of \(L \) affects the value of \(\ell^*_s \) in the Left and the Right IBVPs.

In the Left IBVP, we observed that if \(L \) is less than \(\ell^*_s \), the solution does not quench. On the other hand, elongation of \(L \) beyond \(\ell^*_s \) only elongates the quenching region but does not affect the value of \(\ell^*_s \) itself. In contrast, for the Right IBVP, we found that the elongation of \(L \) increases the value of \(\ell^*_s \) by approximately the same amount.

Overall, our findings contribute to the understanding of the solution behavior of singular convection-diffusion problems beyond quenching. For future research, there are several avenues for future research in this area.

One possible direction for future research is to develop a more efficient numerical method for solving for \(\ell^*_s \) based on (2.9) and (3.9). The method presented in Chapter IV works well; however, there may be other approaches that can further improve the computational efficiency and accuracy of the solution.

Another suggestion for future research is to investigate the behavior of the parabolic equation with nonhomogeneous boundary conditions. While this study focused on homogeneous boundary conditions, many practical applications involve nonhomogeneous
boundary conditions, and it would be interesting to explore how the steady-state solution profile changes in these cases.

Last but not least, it would be valuable to investigate quenching phenomena in other types of problems, such as those that arise in hyperbolic equations. For example, quenching waves have been observed in some hyperbolic systems, and it would be interesting to explore how these phenomena are affected by different parameter regimes and boundary conditions.

Overall, the results presented in this thesis provide a solid foundation for further research in the area of parabolic partial differential equations beyond quenching, and we hope that the suggestions outlined here will inspire and guide future investigations in this field.
REFERENCES

APPENDIX A1: Green’s function derivation (Lemma 2.2)

We would like to find a Green’s function G of (2.3). The Green’s function is the solution to the following boundary-value problem [18]:

\[-(x^r G_x(x; \xi))_x = \delta(x - \xi), 0 < x, \xi < \tilde{\ell}, \quad (A1.1)\]
\[G(0; \xi) = 0, \quad (A1.2)\]
\[G(\tilde{\ell}; \xi) = 0. \quad (A1.3)\]

We divide the interval $(0, \tilde{\ell})$ into two parts at ξ. Consider the region to the left of ξ where $0 < x < \xi$. Let G^- denote the Green’s function on this region. From (A1.1), G^- must satisfy

\[-(x^r G^-_x(x; \xi))_x = 0, 0 < x < \xi. \quad (A1.4)\]

On the other hand, we let G^+ be the Green’s function on the region to the right of ξ where $\xi < x < \tilde{\ell}$. From (A1.1), G^+ must satisfy

\[-(x^r G^+_x(x; \xi))_x = 0, \xi < x < \tilde{\ell}. \quad (A1.5)\]

We propose that the Green’s functions be

\[G^-(x; \xi) = \left(\frac{A^-}{1 - r} \right) x^{1-r} + B^-\]

and

\[G^+(x; \xi) = \left(\frac{A^+}{1 - r} \right) x^{1-r} + B^+\]

so that G^- and G^+ satisfy (A1.4) and (A1.5), respectively.

We need four equations to solve for A^+, A^-, B^+ and B^-. First, we use the boundary
conditions (A1.2) and (A1.3) to create two equations:

\[G^-(0; \xi) = B^- = 0 \quad (A1.6) \]

and

\[G^+(\tilde{\ell}; \xi) = \left(\frac{\xi^{1-r}}{1 - r} \right) A^+ + B^+ = 0. \quad (A1.7) \]

Consider

\[G^+(\xi + \epsilon; \xi) - G^-(\xi - \epsilon; \xi) = \left(\frac{(\xi + \epsilon)^{1-r}}{1 - r} \right) A^+ + B^+ - \left(\frac{(\xi - \epsilon)^{1-r}}{1 - r} \right) A^- - B^- \]

for some \(\epsilon > 0 \). We have, by the continuity of the Green’s function \(G \), that \(\lim_{\epsilon \to 0}(G^+(\xi + \epsilon; \xi) - G^-(\xi - \epsilon; \xi)) = 0 \). Therefore, we have the third equation

\[\left(\frac{\xi^{1-r}}{1 - r} \right) (A^+ - A^-) + B^+ - B^- = 0. \quad (A1.8) \]

To obtain the last equation, we integrate (A1.1) with respect to \(x \) from \(\xi - \epsilon \) to \(\xi + \epsilon \)

\[\int_{\xi - \epsilon}^{\xi + \epsilon} - (x^r G_x(x; \xi))_x dx = \int_{\xi - \epsilon}^{\xi + \epsilon} \delta(x - \xi) dx \]

\[- (x^r G_x(x; \xi)) \bigg|_{\xi - \epsilon}^{\xi + \epsilon} = 1 \]

\[(\xi - \epsilon)^{1-r} G_x^- (\xi - \epsilon; \xi) - (\xi + \epsilon)^{1-r} G_x^+ (\xi + \epsilon; \xi) = 1. \]

Let \(\epsilon \to 0 \), we have that

\[\xi^{1-r} (G_x^- (\xi; \xi) - G_x^+ (\xi; \xi)) = 1 \]

\[A^- - A^+ = 1. \quad (A1.9) \]
Solving (A1.6) – (A1.9) simultaneously, we get the Green’s function G as follows:

$$G(x; \xi) = \begin{cases}
\frac{x^{1-r}}{1-r} \left(1 - \left(\frac{\xi}{\ell} \right)^{1-r} \right) & \text{for } 0 \leq x < \xi, \\
\frac{x^{1-r}}{1-r} \left(1 - \left(\frac{x}{\ell} \right)^{1-r} \right) & \text{for } \xi < x \leq \tilde{\ell}.
\end{cases}$$

Furthermore, the solution to (2.3) can be expressed using the Green’s formula ([18], p.167) as follows:

$$W(x) = \int_{0}^{\tilde{\ell}} \xi G(x; \xi) f(W(\xi)) \, d\xi + c \left(\frac{x}{\ell} \right)^{1-r}, \quad x \in [0, \tilde{\ell}].$$
APPENDIX A2 : Green’s function derivation (Lemma 2.3)

We would like to find a Green’s function G of the following boundary-value problem:

\[
\begin{align*}
-(x^r W'(x))' &= x^r f(W(x)), \quad x_1 < x < x_2, \\
W(x_1) &= c = W(x_2).
\end{align*}
\]

(A2.1)

The Green’s function is the solution to the following boundary-value problem [18]:

\[
\begin{align*}
-(x^r G_x(x; \xi))_x &= \delta(x - \xi), \quad x_1 < x, \xi < x_2, \\
G(x_1; \xi) &= 0, \\
G(x_2; \xi) &= 0.
\end{align*}
\]

(A2.2) (A2.3) (A2.4)

We divide the interval (x_1, x_2) into two parts at ξ. Consider the region to the left of ξ where $x_1 < x < \xi$. Let G^- denote the Green’s function on this region. From (A2.2), G^- must satisfy

\[
-(x^r G^-(x; \xi))_x = 0, \quad x_1 < x < \xi.
\]

(A2.5)

On the other hand, we let G^+ be the Green’s function on the region to the right of ξ where $\xi < x < x_2$. From (A2.2), G^+ must satisfy

\[
-(x^r G^+(x; \xi))_x = 0, \quad \xi < x < x_2.
\]

(A2.6)

We propose that the Green’s functions be

\[
G^-(x; \xi) = \left(\frac{A^-}{1 - r} \right) x^{1-r} + B^- \]

and

\[
G^+(x; \xi) = \left(\frac{A^+}{1 - r} \right) x^{1-r} + B^+.
\]
so that G^- and G^+ satisfy (A2.5) and (A2.6), respectively.

We need four equations to solve for A^+, A^-, B^+ and B^-. First, we use the boundary conditions (A2.3) and (A2.4) to create two equations:

$$G^-(x_1; \xi) = \left(\frac{x_1^{1-r}}{1-r} \right) A^- + B^- = 0 \quad (A2.7)$$

and

$$G^+(x_2; \xi) = \left(\frac{x_2^{1-r}}{1-r} \right) A^+ + B^+ = 0. \quad (A2.8)$$

Consider

$$G^+(\xi + \epsilon; \xi) - G^-(\xi - \epsilon; \xi) = \left(\frac{(\xi + \epsilon)^{1-r}}{1-r} \right) A^+ + B^+ - \left(\frac{(\xi - \epsilon)^{1-r}}{1-r} \right) A^- - B^-$$

for some $\epsilon > 0$. We have, by the continuity of the Green’s function G, that $\lim_{\epsilon \to 0} (G^+(\xi + \epsilon; \xi) - G^-(\xi - \epsilon; \xi)) = 0$. Therefore, we have the third equation

$$\left(\frac{\xi^{1-r}}{1-r} \right) (A^+ - A^-) + B^+ - B^- = 0. \quad (A2.9)$$

To obtain the last equation, we integrate (A2.2) with respect to x from $\xi - \epsilon$ to $\xi + \epsilon$

$$\int_{\xi - \epsilon}^{\xi + \epsilon} - (x^r G_x(x; \xi)) x = \int_{\xi - \epsilon}^{\xi + \epsilon} \delta(x - \xi) dx$$

$$-(x^r G_x(x; \xi)) \bigg|_{\xi - \epsilon}^{\xi + \epsilon} = 1$$

$$(\xi - \epsilon)^{1-r} G^-_x (\xi - \epsilon; \xi) - (\xi + \epsilon)^{1-r} G^+_x (\xi + \epsilon; \xi) = 1.$$

Let $\epsilon \to 0$, we have that

$$\xi^{1-r} (G^-_x (\xi; \xi) - G^+_x (\xi; \xi)) = 1$$

$$A^- - A^+ = 1. \quad (A2.10)$$
Solving (A2.7) – (A2.10) simultaneously, we get the Green’s function G as follows:

$$G(x; \xi) = \begin{cases}
\left(\frac{x^{1-r} - x_1^{1-r}}{1-r} \right) \left(\frac{x_2^{1-r} - \xi^{1-r}}{x_2^{1-r} - x_1^{1-r}} \right) & \text{for } x_1 \leq x < \xi, \\
\left(\frac{x_2^{1-r} - x_1^{1-r}}{1-r} \right) \left(\frac{\xi^{1-r} - x_1^{1-r}}{x_2^{1-r} - x_1^{1-r}} \right) & \text{for } \xi < x \leq x_2
\end{cases}$$

Furthermore, the solution to (A2.1) can be expressed using the Green’s formula ([18], p.167) as follows:

$$W(x) = \int_0^x \xi^r G(x; \xi) f(W(\xi)) \, d\xi + c, \quad x \in [x_1, x_2].$$
APPENDIX A3 : Green’s function derivation (Lemma 3.2)

We would like to find a Green’s function G of (3.3). The Green’s function is the solution to the following boundary-value problem [18]:

\[-(x^r G_x(x;\xi))_x = \delta(x - \xi), \; \bar{\ell} < x, \xi < L, \quad (A3.1)\]
\[G(\bar{\ell};\xi) = 0, \quad (A3.2)\]
\[G(L;\xi) = 0. \quad (A3.3)\]

We divide the interval ($\bar{\ell}, L$) into two parts at ξ. Consider the region to the left of ξ where $\bar{\ell} < x < \xi$. Let G^- denote the Green’s function on this region. From (A3.1), G^- must satisfy

\[-(x^r G^-_x(x;\xi))_x = 0, \; \bar{\ell} < x < \xi. \quad (A3.4)\]

On the other hand, we let G^+ be the Green’s function on the region to the right of ξ where $\xi < x < L$. From (A3.1), G^+ must satisfy

\[-(x^r G^+_x(x;\xi))_x = 0, \; \xi < x < L. \quad (A3.5)\]

We propose that the Green’s functions be

\[G^-(x;\xi) = \left(\frac{A^-}{1 - r} \right) x^{1-r} + B^-\]

and

\[G^+(x;\xi) = \left(\frac{A^+}{1 - r} \right) x^{1-r} + B^+\]

so that G^- and G^+ satisfy (A3.4) and (A3.5), respectively.

We need four equations to solve for A^+, A^-, B^+ and B^-. First, we use the boundary
conditions (A3.2) and (A3.3) to create two equations:

\[G^-(\tilde{\ell}; \xi) = \left(\frac{\tilde{\ell}^{1-r}}{1-r} \right) A^- + B^- = 0 \]

(A3.6)

and

\[G^+(L; \xi) = \left(\frac{L^{1-r}}{1-r} \right) A^+ + B^+ = 0. \]

(A3.7)

Consider

\[G^+(\xi + \epsilon; \xi) - G^-(\xi - \epsilon; \xi) = \left(\frac{(\xi + \epsilon)^{1-r}}{1-r} \right) A^+ + B^+ - \left(\frac{(\xi - \epsilon)^{1-r}}{1-r} \right) A^- - B^- \]

for some \(\epsilon > 0 \). We have, by the continuity of the Green’s function \(G \), that \(\lim_{\epsilon \to 0} (G^+(\xi + \epsilon; \xi) - G^-(\xi - \epsilon; \xi)) = 0 \). Therefore, we have the third equation

\[\left(\frac{\xi^{1-r}}{1-r} \right) (A^+ - A^-) + B^+ - B^- = 0. \]

(A3.8)

To obtain the last equation, we integrate (A3.1) with respect to \(x \) from \(\xi - \epsilon \) to \(\xi + \epsilon \)

\[\int_{\xi - \epsilon}^{\xi + \epsilon} -x^r G_x(x; \xi) \, dx = \int_{\xi - \epsilon}^{\xi + \epsilon} \delta(x - \xi) \, dx \]

\[\left. -x^r G_x(x; \xi) \right|_{\xi - \epsilon}^{\xi + \epsilon} = 1 \]

\[(\xi - \epsilon)^{1-r} G_x^-(\xi - \epsilon; \xi) - (\xi + \epsilon)^{1-r} G_x^+(\xi + \epsilon; \xi) = 1. \]

Let \(\epsilon \to 0 \), we have that

\[\xi^{1-r} (G_x^-(\xi; \xi) - G_x^+(\xi; \xi)) = 1 \]

\[A^- - A^+ = 1. \]

(A3.9)
Solving (A3.6) – (A3.9) simultaneously, we get the Green’s function G as follows:

$$G(x; \xi) = \begin{cases}
\frac{x^{1-r} - \ell^{1-r}}{1-r} \left(\frac{L^{1-r} - \xi^{1-r}}{L^{1-r} - \ell^{1-r}} \right) & \text{for } \ell \leq x < \xi, \\
\frac{L^{1-r} - x^{1-r}}{1-r} \left(\frac{\xi^{1-r} - \ell^{1-r}}{L^{1-r} - \ell^{1-r}} \right) & \text{for } \xi < x \leq L.
\end{cases}$$

Furthermore, the solution to (3.3) can be expressed using the Green’s formula ([18], p.167) as follows:

$$W(x) = \int_\ell^x \xi^{r} G(x; \xi) f(W(\xi)) \, d\xi + c \left(\frac{L^{1-r} - x^{1-r}}{L^{1-r} - \ell^{1-r}} \right)^{1-r}, \quad x \in [\ell, L].$$
Numerical Method

```python
import autograd.numpy as np
from autograd import grad

def compute(f, c, r, L, tol_bisect, tol_newton, N, type_bvp):
    if type_bvp == 1:
        l = L
    elif type_bvp == 2:
        l = 0
    else:
        print("Invalid Problem Type")
        l_conv, x, w_conv = np.inf, np.inf, np.inf
        return l_conv, x, w_conv

def grad(f, w):
    g = grad(f)
    n = len(w)
    f_prime = np.zeros(n)
    for i in range(n):
        f_prime[i] = g(w[i])
    return f_prime

def fprime(w):
    n = len(w)
    return np.zeros(n)

def tol_bisec:
    while del_bisect > tol_bisect:
        if type_bvp == 1:
            h = 1/(N+1)
            x = np.linspace(0, 1, N+2)
            w = np.zeros(N+1)
        else:
            h = (1-1)/(N+1)
            x = np.linspace(1, N, N+2)
            w = np.zeros(N+1)
        gamma = 1/h**2 + 1/(2*h**2 + 1)
        gamma_bar = 1/h**2 + 1/(2*h**2 + 1)
        J = np.diag([gamma + gamma_bar] * N) + np.diag(gamma_bar * np.ones(N)) + np.diag(gamma * np.ones(N))
        F = np.zeros(N)
        j, flag_div = 0, 0
        while flag_div == 0 and del_newton > tol_newton:
            1_prev = j
            j += 1
            for i in range(N):
                F[i] = gamma[i] * w[i] + 1 + gamma_bar[i] * w[i] + 1 + gamma[i] * fprime(w[i])
                J = np.diag(gamma_bar * np.ones(N))
                w_prev = w.copy()
                w[i] = w[i] + 1 - np.linalg.solve(J, F)
            if sum(w[i] > 1) > 0:
                flag_div = 1
                del_newton = np.linalg.norm(w - w_prev, np.inf)
            else:
                if flag_div == 1:
                    if type_bvp == 1:
                        right = 1
                    else:
                        left = 1
                else:
                    if type_bvp == 1:
                        left = 1
                    else:
                        right = 1
            1 = (left + right) / 2
            del_bisect = abs(1 - 1_prev)
        return l_conv, x, w_conv
```
APPENDIX B2 : Example 4.1 and Example 4.2

Example 4.1.

```python
import pandas as pd

table = pd.DataFrame(columns=['r','b','L','l1','l2'])
eps,tol = 1e-6,1e-6
N = 100
c = 1
rr = [1/7,1/5]
bb = [1/4,1/3,1/2]
LL = [5,7,10]

for i in rr:
    for j in bb:
        for k in LL:
            l1 = compute_l(lambda u:1/(c-u)**2,c,i,k,tol,eps,N,1)[0]
            l2 = compute_l(lambda u:1/(c-u)**2,c,i,k,tol,eps,N,2)[0]
            table.loc[len(table)] = [i,j,k,l1,l2]

print(table)
```

Example 4.2.

```python
import pandas as pd

table = pd.DataFrame(columns=['r','a','b','L','l1','l2'])
eps,tol = 1e-6,1e-6
N = 100
c = 1
rr = [1/7,1/5]
aa = [1,2]
bb = [1/4,1/2,1]
LL = [5,7,10]

for i in rr:
    for a in aa:
        for j in bb:
            for k in LL:
                l1 = compute_l(lambda u:a-j*np.log(c-u),c,i,k,tol,eps,N,1)[0]
                l2 = compute_l(lambda u:a-j*np.log(c-u),c,i,k,tol,eps,N,2)[0]
                table.loc[len(table)] = [i,a,j,k,l1,l2]

print(table)
```
APPENDIX B3 : Solution profiles plotting

```python
# % Plotting

import matplotlib.pyplot as plt

def plotSol1(l_conv,x,w_conv,c,L):
    plt.plot([l_conv,l_conv], [0,c], 'r--')
    plt.plot([l_conv,l_conv], [x,x], 'k')
    plt.xlabel('x')
    plt.ylabel('M')
    plt.text(l_conv, 0.2, '-0.15 "$\ell^*_s$", fontsize=14, color='r')
    plt.show()

def plotSol2(l_conv,x,w_conv,c,L):
    plt.plot([0,l_conv], [c,c], 'r--')
    plt.plot([x,x], [c,c], 'k')
    plt.xlabel('x')
    plt.ylabel('M')
    plt.text(l_conv, 0.2, '-0.15 "$\ell^*_s$", fontsize=14, color='r')
    plt.show()

# Example 4.1.
eps, tol = 1e-6, 1e-6
N = 100
c,r,b,L = 1,1/5,1/3,5
l1,x1,w1 = computeL(lambda u:1/(c-0)**3, c, r, b, L, tol, eps, N, 1)
l2,x2,w2 = computeL(lambda u:1/(c-0)**3, c, r, b, L, tol, eps, N, 2)
plotSol1(l1,x1,w1,c,L)
plotSol2(l2,x2,w2,c,L)

# Example 4.2.
eps, tol = 1e-6, 1e-6
N = 100
c,r,L = 1,1/5,5
l1,x1,w1 = computeL(lambda u:np.log(c-u)+1, c, r, L, tol, eps, N, 1)
l2,x2,w2 = computeL(lambda u:np.log(c-u)+1, c, r, L, tol, eps, N, 2)
plotSol1(l1,x1,w1,c,L)
plotSol2(l2,x2,w2,c,L)
```

[Note: The code is pasted as plain text without any syntax error for readability.]

BIOGRAPHY

<table>
<thead>
<tr>
<th>Name</th>
<th>Benjamin Thaitavorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth</td>
<td>28 July 1996</td>
</tr>
<tr>
<td>Place of Birth</td>
<td>Chiang Mai, Thailand</td>
</tr>
<tr>
<td>Educations</td>
<td>B.Eng. in Aerospace Engineering (First-class Honours), Chulalongkorn University, 2020</td>
</tr>
<tr>
<td>Awards Received</td>
<td>Vidyabundit Scholarship for Graduate Studies in Science (2021)</td>
</tr>
<tr>
<td>Publications</td>
<td></td>
</tr>
</tbody>
</table>