DEVELOPMENT OF $\text{Sr}_2\text{FeTiO}_6$-$\Delta$ ELECTRODE FOR SOLID OXIDE FUEL CELL

Miss Ausa Potong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry

Department of Chemistry
Faculty of Science
Chulalongkorn University
Academic Year 2018
Copyright of Chulalongkorn University
การพัฒนาขั้วไฟฟ้า Sr₂FeTiO₆-δด สำหรับเซลล์เชื้อเพลิงออกไซด์ของแข็ง

น.ส.อุษา โพธิ์ทอง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาเคมี ภาควิชาเคมี
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2561
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย
Thesis Title: DEVELOPMENT OF Sr$_2$FeTiO$_6$ DELTA ELECTRODE FOR SOLID OXIDE FUEL CELL

By: Miss Ausa Potong

Field of Study: Chemistry

Thesis Advisor: Associate Professor SOAMWADEE CHAIANANSUTCHARIT, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

.. Dean of the Faculty of Science
(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

.. Chairman
(Associate Professor Vudhichai Parasuk, Ph.D.)

.. Thesis Advisor
(Associate Professor SOAMWADEE CHAIANANSUTCHARIT, Ph.D.)

.. Examiner
(Associate Professor SAOWARUX FUANGSWASDI, Ph.D.)

.. External Examiner
(Assistant Professor Jinda Yeyongchaiwat, Ph.D.)
อุษา โพธิ์ทอง: การพัฒนาขั้วไฟฟ้า Sr$_2$FeTiO$_6$-เดลตา สำหรับเซลล์เชื้อเพลิงออกไซด์ของแข็ง. (DEVELOPMENT OF Sr$_2$FeTiO$_6$ DELTA ELECTRODE FOR SOLID OXIDE FUEL CELL)

ที่ปรึกษาหลัก: รศ. ดร.โสมวดีไชยอนันต์สุจริต

สาระสำคัญ:

ด้วยขอเพื่อประโยชน์แก่ Sr$_2$FeTi$_{1-x}$(Nb,V)$_x$O$_6$ (x=0.05-0.50) สามารถเตรียมได้โดยการแทนที่ไนโอเบียมและวาเนเดียมที่ตําแหน่งไทเทียมของ Sr$_2$FeTiO$_6$ (SFT) และนำมาทดสอบการเป็นขั้วไฟฟ้าในเซลล์เชื้อเพลิงของแข็งที่อุณหภูมิปานกลาง (500-800 องศาเซลเซียส) ผลการวิเคราะห์โครงสร้างด้วย XRD พบว่า Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_6$ และ Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_6$ เป็นสารบริสุทธิ์ไม่มีโครงสร้างสารอื่นเช่นปน และจะพบสารเชื่อม (Sr(FeNb)$_{0.5}$O$_3$ และ Sr(VO)$_2$) เมื่อมีเพิ่มอัตราส่วนของไนโอเบียมและวาเนเดียมในโครงสร้าง การใส่ไนโอเบียมและวาเนเดียมปริมาณเล็กน้อยในโครงสร้าง SFT ส่งผลให้การนำไฟฟ้าและสมบัติทางไฟฟ้าเพิ่มขึ้น เมื่อศึกษาสารออกแบบที่มีการแทนที่ไนโอเบียมในโครงสร้าง เมื่อว่า Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_6$ และ Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_6$ มีค่าการนำไฟฟ้าสูงที่สุดคือ 2.44 และ 3.93 ซีเมนต์ต่อเซนติเมตรต่อลดับ และมีค่าความดันผ่านที่ต่ำประมาณ 1.91 และ 1.89 โอมตารางเซนติเมตรที่อุณหภูมิ 800 องศาเซลเซียสเมื่อสารเชื่อมสูงแล้ว เมื่อนำสารที่สังเคราะห์เป็นปิคคลาสอินเด็กซ์ที่มีการแทนที่ไนโอเบียมใน SOFC พบว่า Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_6$ และ Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_6$ แสดงศักยภาพสูง โดยสามารถใช้เป็นที่ขั้นแรกของและจะอ่อนในเซลล์เชื้อเพลิงออกไซด์ของแข็งได้ โดยทำก็ถ้าใช้ที่สูงสุดของแคนท์โดยใช้LSGM เป็นอิเล็กโทรไลต์คือ 97 และ 106 มิลลิวัตต์ต่อตารางเซนติเมตรที่อุณหภูมิ 800 องศาเซลเซียสสำหรับ Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_6$ และ Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_6$ ค่าดังกล่าว และมีค่าเป็นขั้นแรกในเซลล์เชื้อเพลิงออกไซด์ของแข็ง เมื่อสาร Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_6$ และ Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_6$ พบว่าได้กล่าวถึงที่สูงสุดคือ 69 และ 86 มิลลิวัตต์ต่อตารางเซนติเมตรที่ อุณหภูมิ 800 องศาเซลเซียส นอกจากนี้พบว่าสาร Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_6$ และ Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_6$ ที่ใช้เป็นอิเล็กโทรไลต์ไม่ทำปฏิกิริยา กับ LSGM ที่เป็นอิเล็กโทรไลต์เมื่อนำมาแพร่กันที่อุณหภูมิ 900 องศาเซลเซียสเป็นเวลา 5 ชั่วโมงภายใต้บรรยากาศปกติ
Abuse Potongs: DEVELOPMENT OF $\text{Sr}_2\text{FeTiO}_6$ DELTA ELECTRODE FOR SOLID OXIDE FUEL CELL. Advisor: Assoc. Prof. SOAMWADEE CHAIANANSUTCHARIT, Ph.D.

$\text{Sr}_2\text{FeTi}_{1-x}(\text{Nb},\text{V})_x\text{O}_6$ ($x=0.05-0.50$) double perovskites have been synthesized by the substitution of Nb and V on Ti sites of $\text{Sr}_2\text{FeTiO}_6$ (SFT) and tested as electrode for intermediate temperature solid oxide fuel cell (IT-SOFC). The XRD analyses indicated $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_6$ and $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_6$ were pure and the impurities, $\text{Sr}(\text{FeNb})_0.5\text{O}_3$ and $\text{Sr}_3(\text{VO}_2)_2$, were found with the increasing of Nb and V contents in SFT. By small addition of Nb and V in SFT, the electrical conductivity and electrochemical property of SFT was improved. Among the various oxide examined, $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_6$ and $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_6$ showed the highest electrical conductivity of 2.44 and 3.93 S cm$^{-1}$, respectively, and the lowest polarization resistance around 1.91 and 1.89 Ω cm2 at 800°C in air, respectively. For the application as electrode in SOFC, $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_6$ and $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_6$ showed a high potential to be used as both cathode and anode in electrolyte-supported single cell SOFC. The maximum power density of cathodes with LSGM electrolyte were achieved about 97 and 106 mW cm$^{-2}$ at 800°C for $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_6$ and $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_6$, respectively. And the single cell performance of $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_6$ and $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_6$ anodes were 60 and 86 mW cm$^{-2}$ at 800°C, respectively. Furthermore, the reactivity tests demonstrated that $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_6$ and $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_6$ electrodes were chemically compatible with the LSGM electrolyte at 900°C for 5 hours in air.

Field of Study: Chemistry
Academic Year: 2018

Student's Signature ...
Advisor's Signature ..
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Associate Professor Dr. Soamwadee Chaianansucharit for her invaluable help and constant encouragement throughout the course of this research. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my study.

I would like to thank Associate Professor Dr. Vudhichai Parasuk as the chairman, Associate Professor Dr. Saowarux Fuangswasdi and Assistant Professor Dr. Jinda Yeyongchaiwat for serving as this thesis committee.

In addition, I must express my very profound gratitude to my family, all lab’s members and friends for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

Finally, I am grateful for the scholarship and funding of the thesis work provided by the Development and Promotion of Science and Technology Talents Project and Center of Excellence on Petrochemical and Materials Technology.

Ausa Potong
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT (THAI)</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT (ENGLISH)</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Fuel cell</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Solid oxide fuel cell (SOFC)</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 SOFC operation</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 SOFC components</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.1 Electrolyte</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.2 Cathode</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2.3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Double Perovskite Oxide</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Electrical Conductivity</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1 Electronic conductivity</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2 Ionic conductivity</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Fuel Cell Characterization</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1 Current-Voltage (i-V) measurement</td>
<td>17</td>
</tr>
<tr>
<td>1.5.2 Electrochemical Impedance Spectroscopy (EIS)</td>
<td>19</td>
</tr>
</tbody>
</table>
1.6 Literature Review... 21
1.7 Objectives .. 24

CHAPTER 2 EXPERIMENTAL ... 25
2.1 Chemicals.. 25
2.2 Material preparation ... 26
 2.2.1 Anode preparation.. 26
 2.2.2 Cathode preparation... 26
 2.2.3 Samples preparation... 27
 2.2.4 Electrolyte preparation... 28
 2.2.5 Compatibility test .. 28
2.3 Material characterization .. 29
 2.3.1 X-ray diffractometry (XRD) .. 29
 2.3.2 Electrical conductivity Measurement 29
 2.3.3 Thermal expansion coefficient (TEC) 30
 2.3.4 Electrochemical Impedance Spectroscopy 30
 2.3.5 SOFC performance ... 31

CHAPTER 3 RESULT AND DISCUSSION .. 33
3.1 XRD characterizations.. 33
3.2 Electrical conductivity measurement 36
3.3 Electrochemical Impedance Spectroscopy (EIS) 44
3.4 Fuel cell performance.. 46
 3.4.1 Testing of single cell performance using \(\text{Sr}_2\text{FeTi}_{1-x}\text{M}_x\text{O}_{6-\delta} \) (M = Nb, V) oxides as the cathode material 46
3.4.2 Testing of single cell performance using $\text{Sr}_2\text{FeTi}_{1-x}\text{M}_x\text{O}_{6-\delta}$ ($\text{M} = \text{Nb}, \text{V}$) oxides as the anode material .. 52

3.4.3 Cell performance of symmetrical cell .. 57

3.5 X-ray Photoelectron analysis .. 58

3.5.1 XPS results of Nb-doped SFT double perovskites 58

3.5.2 XPS results of V-doped SFT double perovskites 65

3.5 Thermal expansion .. 69

3.7 The chemical compatibility .. 70

CHAPTER 4 CONCLUSION ... 73

4.1 Conclusion ... 73

4.2 Suggestion ... 74

REFERENCES .. 75

VITA .. 87
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A typical fuel cell</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>The chemicals and reagents used in this research</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Compositions and abbreviations of prepare samples</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>The maximum electrical conductivity (σ_{max}) of SFT, Sr2FeTi${1-x}$NbxO${6-\delta}$ and Sr2FeTi${1-x}$VxO${6-\delta}$ (x = 0.05 – 0.5)</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Activation energy of conductivity for Sr2FeTi${1-x}$NbxO${6-\delta}$ (x = 0.05 – 0.50)</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Activation energy of conductivity for Sr2FeTi${1-x}$VxO${6-\delta}$ (x = 0.05 – 0.50)</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>The polarization resistance value of Sr2FeTi${1-x}$NbxO${6-\delta}$ and Sr2FeTi${1-x}$VxO${6-\delta}$ (x = 0 – 0.5) at 800°C in air</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>The maximum power density value and polarization resistance of a SFTNb$_x$/LSGM/NiFe cell with different compositions at 800°C</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>The maximum power density value and polarization resistance of a SFTV$_x$/LSGM/NiFe cell at 800°C</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>The maximum power density value and polarization resistance of a SSC/LSGM/SFTNb$_x$ cell with different compositions at 800°C</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>The maximum power density value and polarization resistance of a SSC/LSGM/SFTV$_x$ cell with different compositions at 800°C</td>
<td>56</td>
</tr>
<tr>
<td>3.9</td>
<td>Calculated Ratio of Fe 2p$_{3/2}$ for SFT and Sr2FeTi${1-x}$NbxO${6-\delta}$ (x = 0.05, 0.10, 0.50) oxides</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Calculated ratio between adsorbed oxygen and lattice oxygen for SFT and Sr2FeTi${1-x}$NbxO${6-\delta}$ (x = 0.05, 0.10, 0.50) oxides</td>
<td>64</td>
</tr>
<tr>
<td>3.11</td>
<td>Calculated Ratio of Fe 2p$_{3/2}$ for SFT and SFTV05 oxides</td>
<td>68</td>
</tr>
</tbody>
</table>
Table 3.12 Calculated ratio between adsorbed oxygen and lattice oxygen for SFT and SFTV05 oxides.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Operating principle of a solid oxide fuel cell</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Conductivity of common electrolyte materials (YSZ, ScSZ, GDC and LSGM) for SOFC</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>The oxygen reduction mechanism for cathode SOFC</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>The hydrogen oxidation mechanism for anode SOFC</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>SEM cross section of Ni-YSZ anode</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Perovskite structure with a 3D network of corner-shared ((BO_6)) octahedra incorporated the 12-fold coordinated A-cation</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Double-perovskite structure with long range B-site cation ordering</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Covalent bonds between the oxygen ion p-orbitals and B-cation</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Electron hopping mechanism</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Oxide ion transfer mechanism</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Saddle point for ion transport</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Fuel cell polarization curve</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Power density curve</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.14</td>
<td>Nyquist plot with the equivalent circuit model</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>DC four point probe measurement</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Schematic diagram of symmetric cell for AC impedance measurement</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Schematic of the single cell measurement for AC impedance and SOFC performance</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>XRD patterns of SFT and (Sr_2FeTi_{1-x}Nb_xO_6-\delta) ((x = 0.05 \sim 0.50)) at room temperature</td>
<td>33</td>
</tr>
</tbody>
</table>
Figure 3.2 XRD patterns of SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) at room temperature .. 34

Figure 3.3 The magnification of main peak in XRD patterns of SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) .. 34

Figure 3.4 The magnification of main peak in XRD patterns of SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) .. 36

Figure 3.5 Temperature dependence on electrical conductivity for SFT in air (a) and Arrhenius plots of the electrical conductivity for SFT (b) ... 38

Figure 3.6 Electrical conductivity of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) with SFT in air as a function of temperature .. 40

Figure 3.7 Arrhenius plot of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) for the electrical conductivity .. 41

Figure 3.8 Electrical conductivity of $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) with SFT in air as a function of temperature .. 42

Figure 3.9 Arrhenius plot of $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 - 0.50$) for the electrical conductivity .. 43

Figure 3.10. Typical impedance spectra of SFT, $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.00 - 0.50$) (a) and $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.00 - 0.50$) (b) with LSGM electrolyte at 800°C in air 45

Figure 3.11 Cell voltage and power density as functions of current density for the single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) cathode at 800°C ... 47

Figure 3.12 Impedance spectra of single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) cathode at 800°C .. 48

Figure 3.13 Cell voltage and power density as functions of current density for the single cell with $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_{6-\delta}$ cathode over the temperature range from 600 – 800°C .. 49

Figure 3.14 Cell voltage and power density as functions of current density for the single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) cathode at 800°C 50
Figure 3.15 Impedance spectra of single cell with Sr$_2$FeTi$_{1-x}$V$_x$O$_{6-\delta}$ (x = 0.00, 0.05, 0.10, 0.20, 0.50) cathode at 800°C ... 50

Figure 3.16 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_{6-\delta}$ cathode over the temperature range from 600 – 800°C ... 51

Figure 3.17 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.00, 0.05, 0.10, 0.20, 0.50) anode at 800°C 52

Figure 3.18 Impedance spectra of single cell with Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.00, 0.05, 0.10, 0.20, 0.50) anode at 800°C ... 53

Figure 3.19 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_{6-\delta}$ anode over the temperature range from 600 – 800°C ... 54

Figure 3.20 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{1-x}$V$_x$O$_{6-\delta}$ (x = 0.00, 0.05, 0.10, 0.20, 0.50) anode at 800°C 55

Figure 3.21 Impedance spectra of single cell with Sr$_2$FeTi$_{1-x}$V$_x$O$_{6-\delta}$ (x = 0.00, 0.05, 0.10, 0.20, 0.50) anode at 800°C ... 55

Figure 3.22 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_{6-\delta}$ anode over the temperature range from 600 – 800°C ... 56

Figure 3.23 Cell voltage and power density as functions of current density for the symmetrical cell with SFT, SFTNb05 and SFTV05 electrode at 800°C 57

Figure 3.24 XPS spectra of Sr 3d for SFT and Sr$_2$FeTi$_{1-x}$NbO$_{6-\delta}$ (x = 0.05, 0.10, 0.50) at room temperature ... 58

Figure 3.25 XPS spectra of Ti 2p for SFT and Sr$_2$FeTi$_{1-x}$NbO$_{6-\delta}$ (x = 0.05, 0.10, 0.50) at room temperature ... 59

Figure 3.26 XPS spectra of Nb 3d for SFT and Sr$_2$FeTi$_{1-x}$NbO$_{6-\delta}$ (x = 0.05, 0.10, 0.50) at room temperature ... 60
Figure 3.27 XPS spectra of Fe 2p for SFT and \(\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta} \) \((x = 0.05, 0.10, 0.50)\) at room temperature .. 61

Figure 3.28 XPS spectra of O 1s for SFT and \(\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta} \) \((x = 0.05, 0.10, 0.50)\) at room temperature .. 64

Figure 3.29 XPS spectra of Sr 3d for SFT and SFTV05 samples at room temperature 65

Figure 3.30 XPS spectra of Ti 2p for SFT and SFTV05 samples at room temperature 66

Figure 3.31 XPS spectra of V 2p for SFTV05 sample at room temperature 67

Figure 3.32 XPS spectra of Fe 2p for SFT and SFTV05 samples at room temperature 67

Figure 3.33 XPS spectra of O 1s for SFT and SFTV05 samples at room temperature 68

Figure 3.34 Thermal expansion curves of SFT, SFTNb05 and SFTV05 as a function temperature in air .. 70

Figure 3.35 XRD pattern of SFT powder, LSGM powder and LSGM-SFT mixture calcined at 900°C for 5 hours in air .. 71

Figure 3.36 XRD pattern of SFTNb05 powder, LSGM powder and LSGM-SFTNb05 mixture calcined at 900°C for 5 hours in air .. 72

Figure 3.37 XRD pattern of SFTV05 powder, LSGM powder and LSGM-SFTV05 mixture calcined at 900°C for 5 hours in air .. 72
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFC</td>
<td>Solid oxide fuel cell</td>
</tr>
<tr>
<td>AFC</td>
<td>Alkaline fuel cell</td>
</tr>
<tr>
<td>PEMFC</td>
<td>Polymeric electrolyte membrane fuel cell</td>
</tr>
<tr>
<td>PAFC</td>
<td>Phosphoric acid fuel cell</td>
</tr>
<tr>
<td>MCFC</td>
<td>Molten carbonate fuel cell</td>
</tr>
<tr>
<td>ORR</td>
<td>Oxygen reduction reaction</td>
</tr>
<tr>
<td>HOR</td>
<td>Hydrogen oxidation reaction</td>
</tr>
<tr>
<td>TPB</td>
<td>Triple-phase boundary</td>
</tr>
<tr>
<td>MIEC</td>
<td>Mixed ionic-electronic conductivity</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffractometry</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>TEC</td>
<td>Thermal expansion coefficient</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Tolerance factor</td>
</tr>
<tr>
<td>r</td>
<td>Ionic radii</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>R_p</td>
<td>Polarization resistance</td>
</tr>
<tr>
<td>σ</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>E_a</td>
<td>Activation energy</td>
</tr>
<tr>
<td>P</td>
<td>Power density</td>
</tr>
<tr>
<td>Z</td>
<td>Impedance</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Nowadays, a rapid rising in human social, economic, and industrial sections causes the demand in energy around the world. Most electrical power generally comes from burning of fossil fuels such as oil, natural gas and coal. The combustion of fossil fuels emits carbon dioxide (CO$_2$) and sulfur dioxide (SO$_2$) into the atmosphere and these gases affect badly to the environment and human health, for example, CO$_2$ causes the phenomenon of global warming [1, 2] and SO$_2$ is directly harmful to human respiratory system. Because the fossil fuels are a limited quantity and will eventually run out, people are seeking for an alternative energy e.g. solar power, wind energy, hydro energy, geothermal energy, biomass energy, fuel cell, etc., to replace these fuels. The alternative energy must also be renewable energy and environmental-friendly. Among the kinds of alternative energy, fuel cells are one of the interesting energy sources due to power efficiency size reduction, and less CO$_2$ output.

1.1 Fuel cell [3-5]

A fuel cell is a device that directly converts the chemical energy into electricity power through the electrochemical reaction between hydrogen (or another fuel) and oxygen. Fuel cell works like battery, but there are some significant differences. Fuel cells don’t run out or need recharging because they produce electrical energy as long as fuel and oxygen are continuously supplied. Batteries, on the other hand, have a limited amount of available energy based on chemical reactant stored. Some additional advantages of the fuel cells are environmental performance, high efficiency, quiet operation, fuel flexibility (such as hydrogen, methanol, ethanol, etc.) and size reduction. Generally, fuel cells have several types. They are classified by the kind of electrolyte used. Fuel cell types are as follows:

- Alkaline fuel cell (AFC)
- Polymeric electrolyte membrane fuel cell (PEMFC)
- Phosphoric acid fuel cell (PAFC)
- Molten carbonate fuel cell (MCFC)
- Solid oxide fuel cell (SOFC)

The summary of each fuel cell types can be followed in Table 1.1 [4].

1.2 Solid oxide fuel cell (SOFC) [6-10]

SOFC is one of fuel cell types that uses a ceramic compound as the electrolyte and operates at very high temperatures (500 – 1000°C). In comparison to other types of fuel cell, SOFC has high efficiency of electricity production and it can considerably reduce costs. Additionally, there are several advantages of SOFC, for example, no use of expensive catalysts (platinum or ruthenium), long lifetime of cell, tolerance to the fuel impurities such as sulfur and low emission of greenhouse gases (CO₂, SO₂, etc.), and fuel flexibility. However, SOFC has some drawbacks owing to the high operating temperature. For example, the materials used requires durable ceramic component in order to have relative thermal expansion for large temperature range, and the long-term operation for startup and cool down is required for minimizing thermal stress of materials in the cell. However, SOFC has wide range in applications and the main applications are stationary power sources for industry, auxiliary power units (APU) for transportation, and portable power sources, like battery chargers.
Table 1.1 A typical fuel cell

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Polymer electrolyte</th>
<th>Alkaline</th>
<th>Phosphoric acid</th>
<th>Molten carbonate</th>
<th>Solid oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>40 – 80</td>
<td>65 – 220</td>
<td>205</td>
<td>650</td>
<td>600 – 1000</td>
</tr>
<tr>
<td>temperature [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrolyte
- Hydrated polymeric ion exchange membrane
- Mobilized or immobilized potassium hydroxide in asbestos matrix
- Immobilized liquid phosphoric acid in SIC
- Immobilized liquid molten carbonate in LiAlO2
- Perovskites (ceramics)

Electrodes
- Carbon
- Platinum
- Carbon
- Nickel and Nickel oxide
- Ceramic based

Catalyst
- Platinum
- Platinum
- Electrode material
- Electrode material

Cell components
- Carbon based
- Carbon based
- Carbon based
- Stainless based
- Ceramic based

Charge carrier
- H^+
- OH$^-$
- H^+
- CO_3^{2-}
- O^{2-}

Reaction at the anode
- $H_2 \rightarrow 2H^+ + 2e^-$
- $H_2 + 2OH^- \rightarrow 2H_2O + CO_2 + 2e^-$
- $H_2 \rightarrow 2H^+ + 2e^-$
- $H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^- + 2\sigma$
- $CO + CO_3^{2-} \rightarrow 2CO_2 + 2e^-$
- $H_2 + O^{2-} \rightarrow H_2O + 2e^-$
- $CO + O^{2-} \rightarrow CO_2 + 2e^-$
- $CH_4 + 4O^{2-} \rightarrow 2H_2O + CO_2 + 8e^-$

Reaction at the cathode
- $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$
- $O_2 + CO_2 + 4e^- \rightarrow 2CO_3^{2-}$
- $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$
- $O_2 + CO_2 + 4e^- \rightarrow 2CO_3^{2-}$
- $O_2 + 4e^- \rightarrow 2O^{2-}$
1.2.1 SOFC operation [11, 12]

SOFC consists of three main parts; an electrolyte, an anode, and a cathode. The electrolyte is sandwiched between the cathode and the anode, while the cathode and anode are connected by an external circuit as illustrated in Figure 1.1. Oxygen gas (O\textsubscript{2}) from air is fed into the cathode and reacts with incoming electrons, which come from the circuit. The combination of oxygen and electrons creates oxide ions (O2−) via the oxygen reduction reaction (ORR) as shown in equation 1.1. The oxide ions then migrate through the electrolyte, which the properties should conduct oxide ions and not conduct electrons, to the anode. Meanwhile, at the anode, these oxide ions combine with hydrogen gas or fuel to liberate electrons and produce water as by-product. This reaction is the hydrogen oxidation reaction, which is presented in equation 1.2, and equation 1.3 displays the overall SOFC reaction. Electrons in the anode flow via the external circuit to the cathode and provide the electricity simultaneously.

Cathode reduction of oxygen: \[\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-} \quad (1.1) \]

Anode oxidation of hydrogen: \[H_2 + O^{2-} \rightarrow H_2O + 2e^- \quad (1.2) \]

Total SOFC reaction: \[H_2 + \frac{1}{2}O_2 \rightarrow H_2O \quad (1.3) \]

![Figure 1.1 Operating principle of a solid oxide fuel cell [12]](image)
1.2.2 SOFC components

As mentioned earlier, SOFC consists of electrolyte, cathode and anode. The properties of materials used as components are very important. There are mainly required properties such as electrical conductivity, catalytic activity, chemical compatibility among different components, thermal stability and matching thermal expansion between interconnect component.

1.2.2.1 Electrolyte

Electrolyte is one of main SOFC component and it is oxide ion conductor materials. The salient features of electrolyte are as follows [13, 14]:

- Electrochemical property: electrolyte must have high ionic conductivity (≥ 0.1 S-cm$^{-1}$ at about 1000°C) because the high ionic conductivity leads to the decreasing of ohmic resistance and it should have low electronic conductivity ($<10^{-3}$ S-cm$^{-1}$) for preventing oxygen leakage and voltage loss.

- Chemical property: electrolyte needs to have the chemical stability with electrode materials, oxygen (air) and fuels.

- Thermal property: electrolyte must be stable under operating temperature and a good match in thermal expansion coefficient (TEC) with other component of the cell especially electrodes.

- Mechanical property: electrolyte should be durable to fracture and stress.

Many challenge materials have been studied as electrolyte materials of SOFC. Yttria stabilized zirconia (YSZ) is the most common and widely used material as electrolyte in SOFC because it has high ionic conductivity and stability. However, YSZ shows low ionic conductivity at lower operating temperature. Scandia stabilized zirconia (ScSZ) also has higher ionic conductivity and long-term stability than YSZ but high cost of scandium and availability of scandium make ScSZ less attractive in SOFC electrolyte materials [15]. Gadolinium doped ceria (GDC) or cerium gadolinium oxide (CGO) has higher ionic conductivity than YSZ and ScSZ. GDC can operate at low temperature thus it has been considered as great electrolyte materials for intermediate-temperature SOFC (IT-SOFC) application. The drawback of this material is low electronic conduction under reducing conditions due to the associated reduction
of Ce$^{4+}$ to Ce$^{3+}$ [16, 17]. In addition to zirconia and ceria materials which has fluorite structure, lanthanum materials with perovskite structure (ABO$_3$) is one of interesting electrolyte for SOFC. LaGaO$_3$ based perovskite with strontium substituted on lanthanum site and magnesium substituted on gallium site ((La$_{1-x}$Sr$_x$(Ga$_{1-y}$Mg$_y$)O$_3$, LSGM) provides excellent ionic conductivity at low temperature, hence it has great potential to be used as electrolyte at low operating temperature [18, 19]. Nevertheless, the limitation of this material is chemical and mechanical stability and price of gallium. Figure 1.2 displays the conductivity of traditional electrolyte materials worked at low temperature for SOFC.

![Figure 1.2 Conductivity of common electrolyte materials (YSZ, ScSZ, GDC and LSGM) for SOFC [20]](image)

1.2.2.2 Cathode

The cathode is a contact layer with the electrolyte and involves in the electrochemical reduction of oxygen. The requirements of cathode materials are mostly as follows [21, 22]:

- High electronic conductivity
- High catalytic activity for oxygen reduction and oxygen molecule dissociation
- Chemical compatibility and minimum reactivity with the electrolyte and interconnect materials
- Stability under the oxidizing atmosphere and during cell fabrication as well as cell operation
- Thermal expansion match with other component of the cell, especially electrolyte and interconnect materials
- Sufficient porosity for oxygen gases to diffuse through cathode to cathode-electrolyte interface
- Low cost

For the cathode, the oxygen reduction reaction (ORR) occurs on the electrode-electrolyte-gas interface or triple-phase boundary (TPB) sites. There are several steps of ORR including O_2 gas diffusion, surface exchange processes (such as oxygen adsorption, dissociation and charge transfer), oxide ion diffusion, and oxide ion transfer from electrode into electrolyte [23].

![Figure 1.3 The oxygen reduction mechanism for cathode SOFC [23]](image)

A wide range of cathode materials has been investigated for SOFC. The perovskite-based oxide materials have been preferred as a potential SOFC cathode such as lanthanum manganite (LaMnO$_3$, LMO). The substitution of alkaline earth cation e.g. Sr$^{2+}$, Ca$^{2+}$ on La site can make the formation of oxygen vacancies in order to balance the charge compensation. This reason causes the material to behave as a mixed ionic and electronic conductor (MIEC) [22]. La$_{1-x}$Sr$_x$MnO$_3$ (LSM) is also higher electronic conductivity compared to LMO and the TEC values of LSM are good
matching with YSZ electrolyte. Additionally, there have been many studies on increasing conductivity of lanthanum-based perovskite [24] e.g. (La, Sr)MO$_3$ systems with $M = $ Mn, Co, Fe. As compared with the ferrites and manganites, the cobaltites have higher electrical conductivity because they offer higher rates of oxide ion diffusion and faster kinetics of oxygen reduction. However, the cobaltites have higher TEC than YSZ electrolyte [25]. Furthermore, these materials are also reactive to YSZ but a thin layer of GDC can reduce the chemical reaction of these cathode with YSZ [11]. For another cathode, Sm$_{0.5}$Sr$_{0.5}$CoO$_3$ (SSC) is of interest materials since SSC exhibits lower polarization resistance, higher electrical conductivity and better performance compare to LSM [26].

1.2.2.3 Anode

The one important component of SOFC is anode, which implicates the oxidation of the fuel. The requirements of anode material properties are as follows [21, 22]:

- High catalytic activity for the electrochemical oxidation of hydrogen (H$_2$) or carbon monoxide (CO) and the other fuels.
- High electronic conductivity
- Adequate porosity for the gas permeation
- Matching of thermal expansion coefficient
- Chemical stability with the electrolyte and interconnect
- Low cost

The candidates of the anode materials are the transition metals, for example, Nickel (Ni), Iron (Fe), Ruthenium (Ru), Cobalt (Co), Platinum (Pt), Palladium (Pd) and Gold (Au). The best metallic anode is Ni because of a good effective catalyst for the hydrogen oxidation reaction (HOR) [27].
However, pure Ni metal is high TEC and tends to aggregate during the operating temperature. Ni-YSZ anode was designed to have the YSZ particles surrounding the Ni particles, as a result the TEC of anode closed to the TEC of electrolyte [29, 30]. In addition, the catalytic activity of Ni-YSZ is higher than that of Ni metal anode because the Ni-YSZ cermet has lower polarization resistance than the pure Ni electrode. Nevertheless, the hydrocarbon fuels e.g. methane fed to anode for long-term operation cause carbon deposition on the Ni-YSZ anode surface, which blocks gas to access the active area. Another problem of Ni-YSZ material is the sulfur impurities from fuels, that can poison the tolerance of anode [31, 32].
Besides Ni-YSZ, an alternatively anode of metal-supported SOFC is Ni-Fe bimetal anode. T. Ishihara et. al. [33] found that the Ni-Fe electrode with the LSGM electrolyte can enhance the anodic catalytic activity. The addition of Fe into metallic Ni-based anode will not only significantly decreased the TEC of the anode but also suppressed coke formation in the hydrocarbon fuels [34, 35]. Furthermore, the ceramic anodes, such as strontium titanate (SrTiO$_3$), Nb-doped SrTiO$_3$, Sr$_2$MgMoO$_6$-δ, have been proposed as the alternative anode materials. These anodes show good performance in reducing carbon deposition and improving sulfur tolerance, but these materials exhibit lower electrical conductivity compared to the Ni-based anodes [36-38].

1.3 Double Perovskite Oxide [39-45]

The double perovskite oxide materials have been investigated for electrode and electrolyte materials in SOFC due to the chemical and physical properties of the perovskite such as chemical flexibility, electronic conductivity, ionic conductivity and good catalyst. The double perovskite oxides have a crystal structure like the perovskite oxides. Normally, the general formula of perovskite is ABO$_3$ with a face-centered cubic structure while the double perovskite formula is A$_2$BB'O$_6$ (double B-site) with a layer-type structure. The perovskites consist of two cations, A and B. Cation A is alkaline earth or lanthanide ions especially Ca, Sr, Ba, La, and cation B is transition ions. The perovskite unit cell possess the structure which the larger A cations located at the corners of the cube, the B-site cations occupied the body center and an oxygen anion located at the face center. The crystal structures of the perovskite and double
perovskite are shown in Figure 1.6 and Figure 1.7, respectively. In Figure 1.6, the A-site has twelve-coordinated oxygen ions whereas the B-site has sixfold oxygen coordination or octahedrally coordination (BO$_6$). For double perovskite structure, two different B-site (B and B’ cations) cations are observed and these two ions are alternated in each layer, as presented in Figure 1.7.

Figure 1.6 Perovskite structure with a 3D network of corner-shared (BO$_6$) octahedra incorporated the 12-fold coordinated A-cation [39]

Figure 1.7 Double-perovskite structure with long range B-site cation ordering [40]
The stability of the perovskite structure is popularly predicted by the unity of the Goldscmidt tolerance factor (t) as shown in equation 1.4. This factor investigates the distortions of the structure and the relative strengths of the A-O and B-O bonds. Usually, the perovskite-type structure is obtained in the range $0.75 \leq t \leq 1.0$ and the perfect perovskite has closer to $t = 1$, when the A cation and the oxygen ion are the same size. For the ideal perovskite, the O-B-O bond angle is 180° or it is linear. The deviation of cubic symmetry arises from the mismatch in size of the cation and anion, which results in the angle change of O-B-O bonds and the tilting of the BO$_6$ octahedra. If t decreases from 1, the lattice structure deforms towards the lower A-site coordination; as a result, the cubic structure changes to rhombohedral. For t > 1, on the other hand, the distortion of perovskite structure to hexagonal and orthorhombic structures is found due to the shared BO$_6$ octahedra faces instead of corners. For double perovskite structure, the tolerance factor can be written as equation 1.5.

\[
t = \frac{r_A + r_O}{\sqrt{2} \times (r_B + r_O)} \quad \text{-------- (1.4)}
\]

\[
t = \frac{r_A + r_O}{\sqrt{2} \times (\frac{r_B}{2} + \frac{r_B'}{2} + r_O)} \quad \text{-------- (1.5)}
\]

Where; \(t \) = the Goldscmidt tolerance factor (t)
\(r_A \) = the ionic radii of A cation
\(r_B \) = the ionic radii of B cation
\(r_B' \) = the ionic radii of B’ cation
\(r_O \) = the ionic radii of oxygen ion

Moreover, the mixed ionic-electronic conductivity (described in the next section) is one of the outstanding features for the perovskite oxides. The partial substitution for B-site cations may influence the electrical property of perovskite compounds owing to some parameters such as ionic radii and electronic configuration. Thus, many current researches have been aimed to develop the perovskite oxide
materials by doping various metal cations into the perovskite structure. Hence that can improve the efficiency of the perovskite properties.

1.4 Electrical Conductivity [46-49]

The mixed ionic-electronic conductivity (MIEC) is the interesting property of perovskite. MIEC materials can conduct both ions and electronic charge carriers (electron/hole) simultaneously. The ionic and electronic conductivity for the perovskite materials are described in details below.

1.4.1 Electronic conductivity

The electronic conduction carries on through electrons or holes along the B-O-B bonding of the BO$_6$ octahedra network in the perovskite structure. Naturally, the overlapping between the d orbitals of B-site cations and the p orbitals of oxygen ions forms the B-O covalent bond as illustrated in Figure 1.8, which displays the overlapping and the covalent bonds between the B cation t$_{2g}$ (d) orbitals and the oxygen ion p$_{\pi}$ orbitals. Additionally, the covalency of the B-O-B bond influences the electrical property of the perovskite oxides. The colinear overlap of all B–O bonding (B-O-B angle about 180°) might also exhibit the larger B3d-O2p overlap. Therefore, the electrons/holes can transport from the t$_{2g}$ orbital into the neighboring t$_{2g}$ orbital B-site cation via the p$_{\pi}$ orbital of the oxygen anion. This pathway is commonly known as the electron hopping mechanism. In addition, there are other ways for the generative electronic conductivity including thermal excitation, deviation from stoichiometry and doping.
1.4.2 Ionic conductivity

The ionic conduction occurs via the oxygen vacancy mechanism. The vacant site of the oxygen ions in the perovskite structure is generated by thermal excitation for the intrinsic defect, and by the cation doping for the extrinsic defect. The oxide ions (O$^{2-}$) in the lattice then diffuse to the nearby oxygen vacancies, which is called the ion transport, and result in ionic conductivity. Figure 1.10 shows the model of the oxide ion transport in the perovskite structure.
In the perovskite oxide, the substitution of the lower valence state cations can create the oxygen vacancies due to the charge compensation. Subsequently, the increasing of oxygen vacancy concentrations essentially increases the ionic conductivity. However, the oxygen ion conductivity not only depends on the oxygen vacancy, but also the geometrical factors. The higher the symmetry of perovskite structure ($t \approx 1$), the greater the ionic conductivity is. For a transfer of oxide ions from one site to the neighboring vacancy along the BO$_6$ octahedral edge, an oxide ion has to pass through a saddle point, which is constructed by two cations of A-site and one cation of B-site, as shown in Figure 1.11. The saddle point is described in term of a critical radii (r_{cr}), which defines the maximum size of the mobile ion to be passed. Also, the larger critical radii can enhance the oxygen ionic conductivity. This critical radii can be calculated by equation 1.6 and 1.7. Therefore, the increasing radii of B cation and the decreasing radii of A cation can encourage the larger critical radii.
\[r_{cr} = \frac{a_0(\frac{3}{4}a_0 - \sqrt{2}r_B) + r_B^2 - r_A^2}{2(r_A - r_B) + \sqrt{2}a_0} \] \hspace{1cm} (1.6)

\[a_0 \approx V_{cell}^{1/3} = 2.37r_B + 2.47 - 2.00(t^{-1} - 1) \] \hspace{1cm} (1.7)

Where; \(r_{cr} \) = the critical radii
\(r_A \) = the radii of A ion
\(r_B \) = the radii of B ion
\(V^{1/3} \) = pseudo cubic lattice parameter

Generally, the electrical conductivity of perovskite oxide is carried out using a four-point probe technique for SOFC application. This technique measures both electronic and ionic conductivity. Thus, the electrical conductivity can be expressed as the sum of the electric and ionic components. This conductivity is also the complex property related to the mobility and concentration terms of all charge carriers, as presented in the equation 1.8 [50].

\[\sigma = C\mu q \] \hspace{1cm} (1.8)

Where; \(\sigma \) = the electrical conductivity (S·cm\(^{-1}\))
\(C \) = the concentration of the carried charge (cm\(^{-3}\))
\(\mu \) = the mobility of the carried charge (m\(^2\) V\(^{-1}\) s\(^{-1}\))
\(q \) = the charge (coulombs)
1.5 Fuel Cell Characterization

Two important techniques are commonly used for investigating the cell performance in SOFCs are a current-voltage (i-V) measurement and the electrochemical impedance spectroscopy (EIS). These two techniques are briefly described in this section.

1.5.1 Current-Voltage (i-V) measurement [50, 51]

The current-voltage (i-V) measurement is quantitatively used for evaluating the fuel cell performance and the power density. The current-voltage (i-V) curve displays the voltage output of the fuel cell for a given current density loading. Also, a typical i-V curve for the fuel cell is shown in Figure 1.12.

![Figure 1.12 Fuel cell polarization curve [51]](image)

The x axis of this curve is the current density, which a unit is amperes per square centimeter (A·cm⁻²). For the ideal fuel cell, the cell voltage would maintain a constant of the theoretical voltage for any amount of current supplied and the ideal cell voltage is determined by the thermodynamics. However, the cell voltage of a real
fuel cell is lower than the ideal fuel cell because of irreversible losses in the fuel cell. There are three major types of the fuel cell losses, as described below:

- At low current densities; the kinetic losses come from the kinetics of electrochemical reactions
- At moderate current densities; the ohmic losses are due to the ionic and electronic conduction
- At high current densities; the concentration losses are due to the mass transport

Therefore, the operation voltage of the fuel cell can be written as equation 1.9.

\[V = E_{\text{thermo}} - \eta_{\text{act}} - \eta_{\text{ohmic}} - \eta_{\text{conc}} \] \hspace{1cm} (1.9)

Where; \(V \) = the real voltage
\(E_{\text{thermo}} \) = the thermodynamically predicted voltage
\(\eta_{\text{act}} \) = the activation loss due to electrochemical reaction kinetics
\(\eta_{\text{ohmic}} \) = the ohmic loss due to electrical resistance in fuel cell
\(\eta_{\text{conc}} \) = the concentration loss due to mass transport

The power density of fuel cell can be calculated from the current and voltage as equation 1.10 and the common power density curve is displayed in Figure 1.13 with a function of the current density. The fuel cell which has high performance exhibits less losses and higher cell voltage for the current loading.

\[P = IV \] \hspace{1cm} (1.10)
1.5.2 Electrochemical Impedance Spectroscopy (EIS) [50, 53-55]

Since the polarization curve in a previous section is not completely provided, the insightful information of the cell resistance, electrochemical impedance spectroscopy (EIS) is a widely used technique for distinguishing the different losses of fuel cell. EIS method is made by applying the small sinusoidal perturbation potential to the cell and then monitoring the responsive current (AC) signal with the same frequency. Technically, the analytical EIS applies a wide range of frequency to the cell and consequently recording the variations in phase and magnitude of the cell voltage and current with the frequency, which can be determined in term of impedance Z.

$$Z = \frac{V(t)}{i(t)} = \frac{V_0 \cos(\omega t)}{i_0 \cos(\omega t - \phi)} = Z_0 (\cos \phi + j \sin \phi) \quad (1.11)$$

Where; $Z =$ the impedance

$V(t) =$ the potential at time

$i(t) =$ the current at time

$\omega =$ the radial frequency

$\phi =$ the phase shift
\[j = \text{the imaginary number } (\sqrt{-1}) \]

Therefore, the complex impedance is:

\[Z = Z_{\text{real}} - Z_{\text{imag}} \quad \text{(1.12)} \]

When; \(Z_{\text{real}} = Z_0 \cos \phi \) and \(Z_{\text{imag}} = Z_0 j \sin \phi \)

Typically, EIS data for the fuel cell are most often represented in Nyquist plots, which are plotted the real impedance \((Z_{\text{real}}) \) of the cell on the x axis versus the imaginary impedance \((Z_{\text{imag}}) \) on the y axis, as shown in Figure 1.14. The semi-circle curve of the Nyquist plot can also be deconvoluted for an equivalent circuit model of the processes that occurs inside the fuel cell, as illustrated in Figure 1.14. In addition, the intercept value on the real impedance axis at high frequency is the ohmic resistance \((R_o) \), which consists of the ohmic resistance of the electrolyte, the contact of electrode with collector and the wires. The difference between the high frequency and the low frequency intercept on real axis corresponds to the polarization resistance \((R_p) \). Furthermore, the charge transfer reaction at the interface between electrolyte and electrode can be observed from the high frequency arcs, while the low frequency arcs were relevant to the molecular oxygen adsorption, dissociation and diffusion processes in the electrode material [56-60].
1.6 Literature Review

In SOFC, it has long been recognized that high operating temperature causes some disadvantage such as short lifetime of the cell and corrosion of the material. At present the development of intermediate temperature SOFC (IT-SOFC) is introduced in order to reduce the operating temperature to 600 – 800°C. However, the decreasing of operating temperature not only limits the electrode kinetics but also highly promotes the activation polarization and concentration polarization. Thus, it is necessary to develop a new electrode material for IT-SOFC. A Sr$_2$FeTiO$_{6-\delta}$ (SFT) double perovskite is one of many interesting materials for IT-SOFC electrode because it shows mixed ionic-electronic conductivity property and it can be used as both cathode and anode. In contrast, the electrical conductivity of SFT oxide is rather low, thus this research is aimed to improve the conductivity of this material in order to be a high potential electrode for IT-SOFC. Some related researches are also briefly summarized in below.

Figure 1.14 Nyquist plot with the equivalent circuit model [55]
According to W. Jung et al. study on the impedance of SrTi$_{1-x}$Fe$_x$O$_{2.8}$ (x = 0.05 – 0.80) cathode with YSZ electrode. The SFT cathode exhibited the mixed ionic-electronic behavior. The SFT material showed the low area specific resistance (ASR) and the surface exchange coefficient value virtually equal to those values of popular (La, Sr)(Co, Fe)O$_3$ (LSCF) cathode. Thus, the SFT mixed conductor can be the suitable cathode material [61].

W. Li et al. prepared Sr$_2$FeTiO$_6$-δ (SFT) by a solid state reaction method and introduced the SFT material as a promising good electrode for IT-SOFC regarding to its properties. The electrical conductivity of SFT material was 2.83 – 2.33 S·cm$^{-1}$ at 600 – 800°C and thermal expansion coefficient in the temperature range of 30 – 1000°C was 16.8 x 10$^{-6}$ K$^{-1}$. Also, the single cell performance of SFT cathode with the SDC electrolyte and NiO-SDC anode was 441 mW·cm$^{-2}$ at 800°C and the area specific resistance was found to be 0.051 Ω·cm2 at 800°C. The maximum power density of symmetrical single cell for SFT/SDC/SFT configuration was 335 mW·cm$^{-2}$ at 800°C [62].

Q. Zhou et al. reported the potential of new SOFC cathode by substitution of Mo on Ti-site in SFT structure (Sr$_2$FeTi$_{0.75}$Mo$_{0.25}$O$_6$-δ, SFTM). The SFTM material had a good chemical compatibility with SDC electrolyte and a maximum electrical conductivity value of 2.31 S·cm$^{-1}$ at 500°C. The thermal expansion coefficient of SFTM oxide was 13.6 x 10$^{-6}$ K$^{-1}$, which was closed to that of electrolyte material. The polarization resistance was 0.4 Ω·cm2 at 800°C for SFTM as electrode and SDC as electrolyte. The single cell of the SFTM cathode on SDC electrolyte with NiO-SDC as anode reached the maximum power density value of 394 mW·cm$^{-2}$ [63].

B. Niu et al. suggested the double perovskite Sr$_2$TiFe$_{1-x}$Mo$_x$O$_6$-δ (x = 0.1, 0.2) as promising candidate materials for SOFC commercials. The Sr$_2$TiFe$_{1-x}$Mo$_x$O$_6$-δ (x = 0.1, 0.2) cathodes were prepared by the traditional solid-state reaction and demonstrated good structure stability, good chemical compatibility, and thermal expansion coefficient matching with the common electrolyte under operating temperature, compared to the Mo substitution on Ti-site in SFT. The electrolyte-supported symmetrical single cell with Sr$_2$TiFe$_{0.9}$Mo$_{0.1}$O$_6$-δ electrode showed the maximum power density of 573 mW·cm$^{-2}$ in H$_2$ fuel and no sign of any degradation on electrochemical
stability test. Besides, the materials can resist carbon deposition and sulfur poisoning better than the traditional anode materials [64].

G. Y. Lee et. al. investigated the properties of La$_{0.8}$Sr$_{0.05}$Ca$_{0.15}$CrO$_3$ (LSCC) doped with Cu, Ni and V and found that the electrical conductivity of LSCC at 800°C varied as 34 S·cm$^{-1}$, 48 S·cm$^{-1}$ and 22 S·cm$^{-1}$ for Cu, Ni and V dopant, respectively. However, the V doped-LSCC sample was more stable in a low oxygen partial pressure than Cu and Ni doped-LSCC samples [65].

W. Zhou et. al. suggested the addition of Nb for SrNb$_{0.1}$Co$_{0.9}$O$_{3-\delta}$ (SNC) perovskite cathode for low temperature SOFC. The SNC had excellent electrical conductivity around 244 mW·cm$^{-2}$ in air at 600°C and 247 - 187 mW·cm$^{-2}$ under P(O$_2$) = 1 x 10$^{-5}$ atm in temperature range of 500 - 600°C. The high charge of Nb$^{5+}$ can stabilize the structure to avoid order-disorder phase transition and enhance the charge-transfer process for ORR. However, the materials showed the relatively high thermal expansion value of 19.1 x 10$^{-6}$ K$^{-1}$ comparing with the common electrolyte due to the spin state of Co. From overall properties of SNC, it had been suggested that SNC can be a promising cathode material for low temperature SOFC [66].

L. Ding et. al. found that Sr$_{1-x}$Co$_{0.7}$Nb$_{0.1}$Fe$_{0.2}$O$_{3-\delta}$ (x = 0, 0.05) perovskite oxide developed a great potential to be a cathode in IT-SOFC. The slight deficiency of Sr in S$_{0.95}$CNF perovskite showed the increasing of oxygen vacancy concentration and oxygen reduction catalytic activity in comparison with SCNF material. The polarization resistance of SCNF and S$_{0.95}$CNF at 700°C was 0.11 Ω·cm2 and 0.18 Ω·cm2, respectively. The charge transfer process was the rate limiting step for SCNF and S$_{0.95}$CNF cathode. Also, the single cell performance of SCNF and S$_{0.95}$CNF cathode with SDC electrolyte-supported were 180 mW·cm$^{-2}$ and 208 mW·cm$^{-2}$, respectively, at 700°C and the single cell for S$_{0.95}$CNF cathode demonstrated high stability under operating condition [67].

C. Yao et. al. discovered that the Nb and W co-doped SrFeO$_{3-\delta}$ perovskite, SrNb$_{0.1}$W$_{0.1}$Fe$_{0.8}$O$_{3-\delta}$ (SNWF), exhibited good performance to be a cathode for IT-SOFC better than the Nb and W single doping, SNF and SWF. That was because SNWF has the oxygen vacancy density more than SNF and SWF. As a result, the SNWF oxide provided better ORR activity, low specific resistance, and high power density compared to those of SNF and SWF samples. The area specific resistance of SNWF, SNF and SWF
at 800°C were 0.071 Ω·cm², 0.087 Ω·cm² and 0.115 Ω·cm², respectively. The maximum output power densities of these cathodes with LSGM electrolyte supported single cell were 832 mW·cm⁻², 772 mW·cm⁻² and 712 mW·cm⁻² at 750°C for SNWF, SNF and SWF, respectively [68].

From above literatures, the substitution of Nb and V on B-site was aimed to improve the properties of double perovskite Sr₂FeTiO₆₋δ (SFT) material for IT-SOFC. Thus, the properties, such as electrical conductivity, catalytic activity for oxygen reduction and hydrogen oxidation, and cell performance were investigated.

1.7 Objectives

1.7.1 To synthesize and characterize Sr₂FeTi₁₋ₓNbₓO₆₋δ and Sr₂FeTi₁₋ₓVₓO₆₋δ (x = 0.05 – 0.50) samples

1.7.2 To measure the properties of Sr₂FeTi₁₋ₓNbₓO₆₋δ and Sr₂FeTi₁₋ₓVₓO₆₋δ (x = 0.05 – 0.50) samples including:
 - Electrical conductivity
 - Electrochemical performance
The chemicals, preparation of materials and characterization of samples are explained in this chapter.

2.1 Chemicals

Table 2.1 shows the chemicals and reagents listed, which were used without purification.

Table 2.1 The chemicals and reagents used in this research

<table>
<thead>
<tr>
<th>Chemical and reagent</th>
<th>Formula weight</th>
<th>Purity (%)</th>
<th>CAS no.</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrCO₃</td>
<td>147.63</td>
<td>≥ 99.9</td>
<td>1633-05-2</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>159.69</td>
<td>81</td>
<td>1317-61-9</td>
<td>Labchem</td>
</tr>
<tr>
<td>NiO</td>
<td>74.69</td>
<td>99</td>
<td>1313-99-1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>325.81</td>
<td>99.99</td>
<td>1312-81-8</td>
<td>Wako</td>
</tr>
<tr>
<td>Ga₂O₃</td>
<td>187.44</td>
<td>≥ 99.99</td>
<td>12024-21-4</td>
<td>Aldrich</td>
</tr>
<tr>
<td>MgO</td>
<td>40.30</td>
<td>≥ 98.0</td>
<td>1309-48-4</td>
<td>Fluka</td>
</tr>
<tr>
<td>Sr(NO₃)₃</td>
<td>211.63</td>
<td>99</td>
<td>10042-76-9</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sm(NO₃)₃•6H₂O</td>
<td>444.47</td>
<td>99.9</td>
<td>13759-83-6</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Co(NO₃)₃•6H₂O</td>
<td>291.03</td>
<td>98 – 102.0</td>
<td>10026-22-9</td>
<td>Univar</td>
</tr>
<tr>
<td>C₆H₈O₇•H₂O</td>
<td>210.14</td>
<td>99.5 – 100.5</td>
<td>77-92-9</td>
<td>Merck</td>
</tr>
<tr>
<td>NH₃NO₃</td>
<td>80.04</td>
<td>101.0</td>
<td>6484-52-2</td>
<td>J.T. Baker</td>
</tr>
<tr>
<td>NH₃ solution</td>
<td>35.50</td>
<td>25</td>
<td>7664-41-7</td>
<td>Merch</td>
</tr>
<tr>
<td>Fe(NO₃)₃•9H₂O</td>
<td>404.00</td>
<td>≥ 98</td>
<td>7782-61-8</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>C₂H₆O</td>
<td>46.07</td>
<td>99</td>
<td>64-17-5</td>
<td>Merch</td>
</tr>
<tr>
<td>TiO₂</td>
<td>79.87</td>
<td>99.8</td>
<td>1317-70-0</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>265.81</td>
<td>99.99</td>
<td>1313-96-8</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>
2.2 Material preparation

2.2.1 Anode preparation

Anode, Nickel Iron Oxide (Ni-Fe), was prepared by modified impregnation method. Firstly, the mixture solution with weight percentage (%wt) ratio between Nickel and Iron of 9: 1 was prepared by dissolving Fe(NO$_3$)$_3$·9H$_2$O in distilled water under heating and stirring for 30 minutes. Then, NiO was dissolved in distilled water and added into the Fe-solution under vigorously stirring. The mixture solution was continuously stirred and heated until the color of solution changed to dark-brown color. After that, the temperature was increased to evaporate the solvent. Before the solvent disappeared, the magnetic stirrer was removed and the slurry was stirred using a glass stirring rod to obtain a dry product. The resulting product was then covered with a glass cover and heated at 200°C to release NOx gases until the dark-brown product was achieved. The product was then transferred into a furnace and heat-treated again at 400°C for 2 hours. Finally, the obtained powder was calcined at 1,200°C for 6 hours and ground with ethanol.

2.2.2 Cathode preparation

Sr$_{0.5}$Sm$_{0.5}$CoO$_6$ (SSC), a cathode, was synthesized via the combination method using citrate and ethylenediamine tetra acetic acid (EDTA) complexing. Firstly, the stoichiometric amount of prepared solution was calculated based on the molar ratio of total metal ions: citric acid: EDTA was around 1: 3: 1.1. Then, the EDTA-NH$_3$·H$_2$O solution, a complexing agent, was prepared by dissolving EDTA in deionized water and...
adding the 25%wt ammonia solution into until the pH of mixture was approximately 7 under stirring. Next, Sr(NO$_3$)$_2$, Sm(NO$_3$)$_3$·6H$_2$O and Co(NO$_3$)$_3$·6H$_2$O were dissolved in deionized water to obtain the dark reddish solution, which was slowly poured into the EDTA-NH$_3$·H$_2$O solution under stirring. After that, the citrate solution of C$_6$H$_8$O$_7$·H$_2$O was added into the solution. At this stage, the pH solution was seriously controlled to 7 by the addition of 25% NH$_4$NO$_3$ solution. Then, the mixture solution was left overnight at room temperature under stirring. The resulting solution was later evaporated on the hot plate until the product was obtained. Lastly, the black product was calcined at 400°C for 2 hours, sintered at 1,000°C for 5 hours, and ground into powder.

2.2.3 Samples preparation

The sample materials prepared in this section were used as both anode and cathode. All samples were synthesized through a traditional solid-state reaction and the compositions and abbreviations of materials are summarized in the Table 2.2.

The stoichiometric amounts of starting materials, SrCO$_3$, Fe$_2$O$_3$, TiO$_2$, Nb$_2$O$_5$ and V$_2$O$_5$ were thoroughly mixed by a mortar and pestle with ethanol for an hour and then calcined in air at 1,050°C for 12 hours. The calcined powder was re-grounded with ethanol for 1 hour. After that the resulting powder was pressed into pellets and sintered in air at 1,250°C for 12 hours to obtain a dense ceramic disk. The heating rate of both calcination and sinterization was 3.3°C min$^{-1}$.
Table 2.2 Compositions and abbreviations of prepare samples

<table>
<thead>
<tr>
<th>Substituted site</th>
<th>Dopant</th>
<th>Composition</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>Sr$_2$FeTiO$_6$</td>
<td>SFT</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td>Sr2FeTi${0.95}$Nb$_{0.05}$O$_6$</td>
<td>SFTNb05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.9}$Nb$_{0.1}$O$_6$</td>
<td>SFTNb1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.8}$Nb$_{0.2}$O$_6$</td>
<td>SFTNb2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.7}$Nb$_{0.3}$O$_6$</td>
<td>SFTNb3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.6}$Nb$_{0.4}$O$_6$</td>
<td>SFTNb4</td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td>Sr2FeTi${0.5}$Nb$_{0.5}$O$_6$</td>
<td>SFTNb5</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Sr2FeTi${0.95}$V$_{0.05}$O$_6$</td>
<td>SFTV05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.9}$V$_{0.1}$O$_6$</td>
<td>SFTV1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.8}$V$_{0.2}$O$_6$</td>
<td>SFTV2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.7}$V$_{0.3}$O$_6$</td>
<td>SFTV3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.6}$V$_{0.4}$O$_6$</td>
<td>SFTV4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2FeTi${0.5}$V$_{0.5}$O$_6$</td>
<td>SFTV5</td>
</tr>
</tbody>
</table>

2.2.4 Electrolyte preparation

In this research, La$_{0.9}$Sr$_{0.1}$Ga$_{0.8}$Mg$_{0.2}$O$_3$ (LSGM) was chosen as the electrolyte because it has high ionic conductivity. LSGM was synthesized by a conventional solid-state reaction. Firstly, the stoichiometric mixture of La$_2$O$_3$, SrCO$_3$, Ga$_2$O$_3$ and MgO were grounded in a mortar homogenously for an hour and then calcined at 1,000°C in air. Later, the calcined powder was re-grounded for 1 hour and pressed into cylindrical disks (2 cm. in diameter) via a cold isostatic pressing (CIP) method at 325 MPa for 30 minutes. Next, the white disks were sintered in air at 1,500°C for 5 hours after that the disks were polished to reduce the thickness to 0.3 mm. by a diamond grinding machine.

2.2.5 Compatibility test

The chemical compatibility between electrode and electrolyte was prepared using a mixture of sample and LSGM electrolyte in 1: 1%wt ratio with grounded and
then calcined at 900°C for 5 hours in air. The calcined powder was analyzed by the X-ray diffraction technique.

2.3 Material characterization

2.3.1 X-ray diffractometry (XRD)

The crystal structure of synthesized materials was carried out using a Rigaku, DMAX 2002 Ultima Plus X-ray powder diffractometer equipped with a monochromator and the Cu X-ray tube (40 kV, 30 mA). The data were recorded on the two-theta range of 20 – 80 degree with a scan speed of 5 degree-min⁻¹ in air at Department of Chemistry, Faculty of Science, Chulalongkorn University.

2.3.2 Electrical conductivity Measurement

Electrical conductivity of the specimens was measured by the DC four-point probes method. The sintered-pellet sample were cut into a rectangular shape with dimension of 12 mm. x 5 mm. x 1.5 mm, and then two platinum wires, the current electrode, were attached to the outer of the rectangular specimen using the platinum paste binder. Also, another two wires which corresponds to the voltage probes were placed between the outer probes as shown in Figure 2.1 and the distance of inner platinum wires is approximately 5 mm. The specimen was heated at 950°C with a heating rate of 5°C-min⁻¹ for 10 minutes in order to assure a good contact between wires and specimen. When the DC current (I) was applied through the current probe, the difference in voltage between the inner platinum probes was recorded from 300°C to 800°C in air with 50°C increments using an Autolab PGSTAT302N potentiostat/galvanostat. In addition, the data were calculated using the equation 2.1.

\[
\sigma = \frac{I}{V} \times \frac{L}{W \times T} \quad (2.1)
\]

Where; \(\sigma \) is the electrical conductivity (S·cm⁻¹)

I is the applied DC current (A)
L is the distance between the two inner probes (cm)
V is the voltage difference between the two outer probes (V)
W is the width of the specimen (cm)
T is the thickness of the specimen (cm)

2.3.3 Thermal expansion coefficient (TEC)

Coefficient of thermal expansion of materials was carried out using a Dilatometer series NETZSCH DIL 402SE and a type of measurement was standard expansion/sample with correction. The data was recorded with the temperature range between 25°C and 1000°C and a scan speed of 5°C·min⁻¹.

2.3.4 Electrochemical Impedance Spectroscopy

Symmetric cells were fabricated using 0.3 mm.- thick LSGM as the electrolyte and the synthesized oxides as the electrodes. The oxide samples were prepared into slurries using a mixture of isobutyrate and ethyl cellulose as a binder. Then, the sample slurry was subsequently applied on both sides of LSGM disk via a screen-printing technique to produce a symmetric cell. Next, the screened disk was heated at 900°C for 30 minutes in air for the complete adhesion between electrolytes and electrodes. After that, the cell was placed on between the alumina tubes without a sealing glass O-ring and exposed to air at operating temperature from 600 – 800°C under ambient pressure. The overall instrumentation is shown in Figure 2.2. Moreover, the AC impedance measurement was recorded on the potentionstat mode of an Autolab.
PGSTAT302N instrument with the frequency response analyser under open circuit conditions and the frequency range is 1 MHz to 0.01 Hz.

![Symmetric cell schematic diagram](image)

Figure 2.2 Schematic diagram of symmetric cell for AC impedance measurement

2.3.5 SOFC performance

Like a symmetric cell, a single cell was prepared by the screen printing method of oxide materials on the electrolyte (LSGM) but the applied electrode side was cathode slurry while the other side was anode. Additionally, the anode side was exposed to hydrogen gas (99.99%) whereas the cathode side was fed by oxygen gas (99.99%) with the flow rate of 100 mL·min⁻¹ at the operating temperature from 600 – 800°C and the cell was sealed by the glass O-ring as shown in Figure 2.3. The voltage (V) and current (I) of single cell were carried out using the U3402A Agilent multimeter and the HA – 151B galvanostat, respectively.
Figure 2.3 Schematic of the single cell measurement for AC impedance and SOFC performance
CHAPTER 3
RESULT AND DISCUSSION

3.1 XRD characterizations

The XRD patterns of SFT and doped oxides sintered at 1250°C for 12 hours in air are shown in Figure 3.1 and Figure 3.2. The XRD spectrum indicates that SFT is pure and has double perovskite structure (JCPDF 84 – 1004), similar to the work report by Q. Zhou [63]. The XRD patterns of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.5$) show a double perovskite structure of SFT and the formation of $\text{Sr(FeNb)}_{0.5}\text{O}_3$ impurity phase (JCPDF 75 – 0003) [69], except in $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_{6-\delta}$ which is a pure phase of SFT. The intensity of impurity phase increases with the increasing of Nb content. Likewise, the XRD patterns of $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.5$) shown in Figure 3.2 denote the double perovskite structure as well. The concentration of $\text{Sr}_3(\text{VO}_4)_2$ (JCPDF 29 – 1318) [70, 71] impurity phase also increases with V content similar to the Nb doped SFT.

![XRD patterns of SFT and Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.05 – 0.50) at room temperature](image-url)

Figure 3.1 XRD patterns of SFT and Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.05 – 0.50) at room temperature
Figure 3.2 XRD patterns of SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.50$) at room temperature.

Figure 3.3 The magnification of main peak in XRD patterns of SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.50$)
Figure 3.3 presents the magnification of XRD pattern for SFT and Sr₂FeTi₁₋ₓNbₓO₆₋₅ (x = 0.05 – 0.50) at 2Theta between 31 to 34 angles. When Nb⁴⁺ ions substituted for Ti⁴⁺ ions in double perovskite structure, the diffraction peak at 2Theta about 32.4 angle was shifted to the high angle, suggesting the contraction of the unit cell lattice, as related to the Bragg’s equation. Even though the pentavalent of niobium ions has larger ionic radii than the tetravalent of titanium ions (Nb⁵⁺ = 0.64 Å, Ti⁴⁺ = 0.605 Å), the expansion of unit cell to the low value of 2Theta angle was not clearly observed below 32.4 angle because it might be related with Fe ions in double perovskite and strontium vacancies. When 0.05 mole of Nb⁵⁺ was added for Ti⁴⁺ ions, the ratio of Fe⁶⁺/Fe³⁺ increased as seen from XPS result. As a result, Fe⁶⁺ ions which have smaller ionic radii than Fe³⁺ ions, cause the shrinkage in lattice structure. As Niobium ions increased, the expansion of lattice was observed compared to 0.05 mole of Nb⁵⁺ but it is also insignificant compared to SFT. Additionally, the substitution of titanium with niobium can create the strontium vacancies and SrO phase, as shown in the following equation written according to the Kröger-Vink notation. If the preferred species is strontium vacancies, the incorporation reaction would be as followed [72]:

\[
\text{SrO} + (1 - x)\text{TiO}_2 + (x/2)\text{Nb}_2\text{O}_5 \rightarrow (1 - x/2)\text{Sr}^{2+}_x + (x/2)V_{\text{Sr}}^{\text{V}} + (1 - x)\text{Ti}^{4+}_x + x\text{Nb}^{5+}_x + 3\text{O}^{2-}_O + (x/2)\text{SrO}
\]

The appearance of SrO caused the lattice structure decreased similar to the works found in SrTi₁₋ₓNbₓO₃₋₅ (0 < x < 0.08) perovskite [73] and Sr₁₋₀.95Ti₁₋ₓNbₓO₃ [72]. When the Nb content in SFT oxides was increased (Nb > 0.05), the main diffraction peak shifted to the low angle of 2Theta compared to SFTNb05, suggesting a slightly expansion of the unit cell. This could be a result of the Nb⁵⁺ content added and the large ionic radii of Nb⁵⁺ ions. However, please note that there was a difficult in determining the unit cell of SFT at high Nb content because the amount of secondary phase, Sr(FeNb)₁₋₀.₅O₃, increased might alter the main diffraction peak of SFT, as reported by T. Tahsin Khan [71]. The impurity phase influenced the crystallite size of the materials which could be easily seen by the lower intensity and the expandable peak width of main peak in the XRD pattern.
Figure 3.4 shows the magnification of XRD pattern for SFT and Sr$_2$FeTi$_{1-x}$V$_x$O$_{6-\delta}$ (x = 0.05 – 0.50) at 2Theta between 31 to 34 angles. When vanadium was doped in SFT oxides, the diffraction peak intentionally shifted to the low values of 2Theta, except for the composition of Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_{6-\delta}$. Because the pentavalent of vanadium has smaller ionic radii ($V^{5+} = 0.54$ Å), substitution of vanadium for the tetravalent of titanium in double perovskite caused the shrinkage of lattice parameter, as a result the main diffraction of SFT shifted to the high 2Theta values as observed in Sr$_2$FeTi$_{0.95}$V$_{0.05}$O$_{6-\delta}$. On the other hand, increasing the amount of V might affect the electron neutrality and the change in spin state of iron [74, 75], which could expand the lattice parameter and result in the shift of the SFT peak to the low angle of 2Theta.

3.2 Electrical conductivity measurement

The temperature dependence on electrical conductivity of SFT in air is illustrated in Figure 3.5(a) The electrical conductivity increases with increasing temperature from 300 – 600°C, suggesting a semiconducting behavior and a typical
metallic behavior above 600°C. The maximum electrical conductivity of SFT is approximately 2.00 S·cm\(^{-1}\) at 600°C, which is lower than that of SFT reported by W. Li et al, around 2.83 – 2.33 S·cm\(^{-1}\) [62]. The activation energy for electrical conduction was derived from a slope of the linear fits in the relationship between \(\ln(\sigma T)\) and 1000/T using equation 3.1, and the Arrhenius plot of conductivity for SFT is displayed in Figure 3.5(b). It is clearly seen that there are two linear fits which the calculated activation energy values are 0.4187 eV (300 – 600°C) and 0.0196 eV (600 – 800°C), respectively, indicating the difference in mechanisms between low and high temperatures. At temperatures below 600°C, the conductivity is dominated by small polaron hopping mechanism [76, 77] and the electrons transfer in double perovskite through the B-O-B bonds [78]. As the rise of temperature, the loss of oxygen in the lattice increases and produces oxygen vacancy, which leads to the ionic conductivity. As a result, the activation energy for ionic conduction is less than that at low temperature. In addition, the oxygen loss in lattice can also break the B-O-B interaction. Therefore, the mobility of electron carriers is decreased as well as the electronic conductivity is also reduced [79]. However, in mixed ionic/electronic conductors (MIECs) such as double perovskites, the electrical conductivity is dominated by the electronic conductivity due to the mobility of electron is much higher than the oxygen ions [80, 81]. Thus, the total conductivity decreases with increasing the temperature.

\[
\sigma = \frac{A}{T} \exp\left(-\frac{E_a}{kT}\right)
\] \hspace{1cm} (3.1)

Where \(\sigma\) is conductivity, \(A\) is the pre-exponential factor, \(T\) is a temperature (K), \(k\) is the Boltzmann constant \((8.6173 \times 10^{-5} \text{ eV·K}^{-1})\), and \(E_a\) is the activation energy for conduction.
Figure 3.5 Temperature dependence on electrical conductivity for SFT in air (a) and Arrhenius plots of the electrical conductivity for SFT (b)
Table 3.1 The maximum electrical conductivity (σ_{max}) of SFT, $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ and $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.5$)

<table>
<thead>
<tr>
<th>Composition</th>
<th>σ_{max} (S·cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Sr}2\text{FeTi}{1-x}\text{Nb}x\text{O}{6-\delta}$</td>
</tr>
<tr>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>0.05</td>
<td>2.44</td>
</tr>
<tr>
<td>0.10</td>
<td>2.08</td>
</tr>
<tr>
<td>0.20</td>
<td>1.62</td>
</tr>
<tr>
<td>0.30</td>
<td>0.82</td>
</tr>
<tr>
<td>0.40</td>
<td>0.63</td>
</tr>
<tr>
<td>0.50</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Figure 3.6 shows a similar trend of temperature dependence on electrical conductivity of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.5$) which the semiconducting behavior is observed. The electrical conductivities of Nb-doped SFT are similar to the SFT indicating the conductivity mechanisms are the same. The overall electrical conductivities of Nb doped SFT decrease obviously with the increasing of Nb content as well as the maximum electrical conductivity of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05 – 0.5$) are shown in Table 3.1. The activation energies of Nb-doped SFT double perovskites were derived from the Arrhenius plots of ln(σ) versus 1000/T in Figure 3.7 and be listed in Table 3.2. It can be seen that the increased E_a value with increasing amount of Nb exhibit the decreasing of electronic conductivity. This is probably related to the impurity phase, $\text{Sr(FeNb)}_{0.5}\text{O}_3$, which is a dielectric material [82]. This secondary phase may reduce the effective contact area in SFTNb double perovskites and provide a defiant influence on the B-O-B networks of Nb-doped SFT lattices, as a result, the electrical conductivity is reduced when the impurity increases in the Nb-doped oxides. These results are in agreement with the work reported by L. Zhang et al. [83]. Additionally, similar trend was also observed on the work reported by G. Xiao et al., who investigated Mo-doped SrFeO$_{3-\delta}$ as cathode material. They mentioned that the conductivity of materials was decreased with increasing Mo content due to the
decreased number of charge carrier or Fe ions [84]. However, the increase of the Fe$^{4+}$ charge improved the electrical property as well [85]. L. dos Santo-Gómaz et al. also reveals that relationship between the structural parameter and the conductivity of Zr-doped SrFeO$_{3-\delta}$ for SOFCs. The structural parameters were expanded as the Zr dopant increased and the electrical conductivity of Zr-doped SFO was reduced. In addition, it was also related to the low concentration of Fe ions charge carriers [86]. Besides, N. Dai et al. discovered the decreasing of unit cell parameters when Ni substituted for Fe in perovskites, Sr$_2$Fe$_{1.5-x}$NiMO$_{0.5}$O$_{6-\delta}$ (x = 0 – 0.1), increased conductivity, compared to the SFM perovskite [87]. Therefore, in this study, with a small amount of Nb dopant, Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_{6-\delta}$ has higher electrical conductivity value than SFT double perovskite, and the maximum conductivity was achieved approximately 2.44 S·cm$^{-1}$ at 700°C. It may relate to the high Fe$^{4+}$/Fe$^{3+}$ ratio in SFTNb05 oxide (see in section 3.5) and the shrinkage of the lattice, as observed from the XRD result, resulting the overlapping between the orbitals of B and O$_2^-$ becomes closer and electrons easily delocalize via B-O-B interaction, then the electronic conductivity is increased.

![Figure 3.6](image)
Figure 3.6 Electrical conductivity of Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.05 – 0.50) with SFT in air as a function of temperature
Figure 3.7 Arrhenius plot of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ (x = 0.05 – 0.50) for the electrical conductivity.

Table 3.2 Activation energy of conductivity for $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ (x = 0.05 – 0.50)

<table>
<thead>
<tr>
<th>Oxides</th>
<th>Activation energy, E_a (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTNb05</td>
<td>0.1592</td>
</tr>
<tr>
<td>SFTNb1</td>
<td>0.1661</td>
</tr>
<tr>
<td>SFTNb2</td>
<td>0.1684</td>
</tr>
<tr>
<td>SFTNb3</td>
<td>0.1692</td>
</tr>
<tr>
<td>SFTNb4</td>
<td>0.1723</td>
</tr>
<tr>
<td>SFTNb5</td>
<td>0.1736</td>
</tr>
</tbody>
</table>

The variation of electrical conductivity of $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ (x = 0.05 – 0.5) samples with temperature in air and the Arrhenius plot of $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ (x = 0.05 – 0.5) for the electrical conductivity are shown in Figure 3.8 and Fig 3.9, respectively. And, the summarization of activation energy is displayed in Table 3.3. Compared to SFT, the electrical conductivities of V-doped SFT increase with small amount of V added to x=0.05 which corresponds to the decreasing of activation energy. With increasing of V content from 0.05-2.0, the electrical conductivity decreases. The highest electrical conductivity was observed on $\text{Sr}_2\text{FeTi}_{0.95}\text{V}_{0.05}\text{O}_{6-\delta}$, which is \sim3.39 S·cm$^{-1}$ at
700°C. This composition was similar to the Nb-doped SFT series which the highest electrical conductivity was observed on Sr$_2$FeTi$_{1.95}$Nb$_{0.05}$O$_{6.5}$. The high electrical conductivity of x = 0.05 in V-doped oxide may result from the shrinkage in structure which provides a good B-O-B interaction. For high V content (x > 0.05), impurity may play a role for the decreasing of conductivity. Since the impurity, Sr$_3$(VO$_4$)$_2$, has dielectric property [70] with high dielectric constant at 400°C thus the resistivity of materials would be increased. As a result, the conductivity decreased with increasing impurity. On the contrary, at high temperature, the dielectric constant of impurity was low thus the conductivity increased with increasing amount of impurity.

![Figure 3.8](image)

Figure 3.8 Electrical conductivity of Sr$_2$FeTi$_{1-x}$V$_x$O$_{6-δ}$ (x = 0.05 – 0.50) with SFT in air as a function of temperature.
Figure 3.9 Arrhenius plot of $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_6$ (x = 0.05 – 0.50) for the electrical conductivity

Table 3.3 Activation energy of conductivity for $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_6$ (x = 0.05 – 0.50)

<table>
<thead>
<tr>
<th>Oxides</th>
<th>Activation energy, E_a (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTV05</td>
<td>0.3044</td>
</tr>
<tr>
<td>SFTV1</td>
<td>0.2371</td>
</tr>
<tr>
<td>SFTV2</td>
<td>0.2324</td>
</tr>
<tr>
<td>SFTV3</td>
<td>0.3132</td>
</tr>
<tr>
<td>SFTV4</td>
<td>0.3016</td>
</tr>
<tr>
<td>SFTV5</td>
<td>0.3033</td>
</tr>
</tbody>
</table>
3.3 Electrochemical Impedance Spectroscopy (EIS)

Figure 3.10(a) shows the typical EIS spectra of Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ ($x = 0.05 – 0.50$) symmetrical cell with LSGM electrolyte at 800°C and the ohmic resistance was set at zero in the Nyquist plot. The polarization resistance value of all Nb substitution in SFT material was also presented in Table 3.4. It can be clearly seen that the polarization resistance value of Nb-doped SFT oxides increases with the increasing amount of Nb. This result also corresponds to the conductivity of Nb-doped SFT (see in 3.2), which the resistance is inverse of conductivity. The decrease in conductivity and the increasing of resistance caused by the increasing of Nb content can be explained by the migration of electrons and oxide ions. Since two semicircles were clearly observed, increasing Nb content limits the charge transfer reaction at the interface and retards the ORR reaction. As the low frequency arc was larger than the high frequency one, it is suggested that the adsorption of oxygen molecule on the surface, the dissociation and diffusion of oxide ion in electrode materials are slow. Thus, the rate determining step of ORR is controlled by the adsorption, dissociation, and diffusion of oxygen molecule into oxide ions [66, 88, 89]. However, the polarization resistance value of Sr$_2$FeTi$_{0.95}$Nb$_{0.05}$O$_{6-\delta}$ was very low compared to others and the impedance plot at high and low frequency is not clearly distinct as two semicircles, suggesting high rate of ORR. Similar to the Nb substitution in SFT, small amount of V substitution promotes the ORR reaction by facilitating charge transfer of electrons, adsorption of oxygen molecules on the surface, dissociation and diffusion of oxide ions in cathode. And, the polarization resistance value of V substitution in SFT increases as the V content increases, suggesting the slow mechanism of oxygen molecule adsorption, dissociation and diffusion of oxide ions. The Nyquist plots of Sr$_2$FeTi$_{1-x}$V$_x$O$_{6-\delta}$ symmetrical cell with LSGM electrolyte at 800°C in air was displayed in Figure 3.10(b) and the polarization resistance values were shown in Table 3.4.
Figure 3.10 Typical impedance spectra of SFT, Sr₂FeTi₁₋ₓNbₓO₆₋δ (x = 0.00 – 0.50) (a) and Sr₂FeTi₁₋ₓVₓO₆₋δ (x = 0.00 – 0.50) (b) with LSGM electrolyte at 800°C in air.
Table 3.4 The polarization resistance value of $\text{Sr}_2\text{FeTi}_{1-x}\text{M}_x\text{O}_{6-\delta}$ and $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0 - 0.5$) at 800°C in air

<table>
<thead>
<tr>
<th>Composition (x)</th>
<th>Polarization resistance, R_p (Ω·cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Sr}2\text{FeTi}{1-x}\text{Nb}x\text{O}{6-\delta}$</td>
</tr>
<tr>
<td>0.00</td>
<td>6.42</td>
</tr>
<tr>
<td>0.05</td>
<td>1.91</td>
</tr>
<tr>
<td>0.10</td>
<td>3.14</td>
</tr>
<tr>
<td>0.20</td>
<td>4.48</td>
</tr>
<tr>
<td>0.30</td>
<td>7.56</td>
</tr>
<tr>
<td>0.40</td>
<td>6.63</td>
</tr>
<tr>
<td>0.50</td>
<td>13.79</td>
</tr>
</tbody>
</table>

3.4 Fuel cell performance

The single cell performance testing of the materials was performed on the LSGM-electrolyte supported cell under H$_2$ gas as a fuel and air as an oxidant. The asymmetrical cell and symmetrical cell test were divided into three parts;

- part I asymmetrical cell (cathode): the synthesized oxides were used as the cathode and NiFe as the anode.
- part II asymmetrical cell (anode): the materials were used as the anode and SSC as the cathode.
- Part III symmetrical cell: the perovskite samples were used as both the cathode and the anode.

3.4.1 Testing of single cell performance using $\text{Sr}_2\text{FeTi}_{1-x}\text{M}_x\text{O}_{6-\delta}$ ($M = \text{Nb, V}$) oxides as the cathode material

Figure 3.11 shows the cell voltage and the power density of SFTNbδ/ LSGM/ NiFe cells at 800°C as a function of the current density. It can be seen that adding Nb improves power density of cell and the cell performance of SFTNb0.5 exhibits the highest maximum power density around 97 mW·cm$^{-2}$, compared to the others. Subsequently, the power density of SFTNb $x = 0.1, 0.2, 0.5$ are 54, 45, 40 mW·cm$^{-2}$,
respectively. The single cell performance of SFTNb\(x\) increases with \(x = 0.05\) and decreases when \(x > 0.05\), that is also in accordance with the decreasing of electrical conductivity and the increasing of polarization resistance for the reaction of cathode. The typical Nyquist plot of SFTNb\(x\)/ LSGM/ NiFe cells at 800°C is presented in Figure 3.12. The polarization resistance values of single cells are 1.15, 1.25, 1.76 and 1.89 Ω·cm\(^2\) for SFTNb05, SFTNb1, SFTNb2 and SFTNb5, respectively. It can be observed that the polarization resistance of cell decreases when Nb was doped in the materials. Thus, the increasing of power density of materials is due to the reducing in polarization resistance. In addition, the increasing amount of niobium makes the polarization resistance increased and the cell performance decreased. The summary of polarization resistance value and the power density value of Nb-doped SFT samples is shown in Table 3.5.

![Graph](image)

Figure 3.11 Cell voltage and power density as functions of current density for the single cell with \(Sr_{x}FeTi_{1-x}Nb_{x}O_{6-δ}\) (\(x = 0.00, 0.05, 0.10, 0.20, 0.50\)) cathode at 800°C.
Figure 3.12 Impedance spectra of single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) cathode at 800°C

Table 3.5 The maximum power density value and polarization resistance of a SFTNbx/LSGM/NiFe cell with different compositions at 800°C

<table>
<thead>
<tr>
<th>Composition</th>
<th>Maximum power density (mW·cm$^{-2}$)</th>
<th>R_p (Ω·cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFT</td>
<td>43</td>
<td>2.99</td>
</tr>
<tr>
<td>SFTNb05</td>
<td>97</td>
<td>1.15</td>
</tr>
<tr>
<td>SFTNb1</td>
<td>54</td>
<td>1.25</td>
</tr>
<tr>
<td>SFTNb2</td>
<td>45</td>
<td>1.76</td>
</tr>
<tr>
<td>SFTNb5</td>
<td>40</td>
<td>1.89</td>
</tr>
</tbody>
</table>

Figure 3.13 shows the cell voltage and power density as a function of current density for the single cell with $\text{Sr}_2\text{FeTi}_{1.95}\text{Nb}_{0.05}\text{O}_{6-\delta}$ cathode in the temperature range of 600 – 800°C with intervals of 50°C. The maximum power density of $\text{Sr}_2\text{FeTi}_{1.95}\text{Nb}_{0.05}\text{O}_{6-\delta}$ cathode are 97, 68, 48, 37 and 28 mW·cm$^{-2}$ at 800, 750, 700, 650 and 600°C, respectively. It can also be observed that the power density decreased with decreasing temperature because of the lower ORR rate. At low temperature, the migration of oxide ions in the materials is very difficult compared to the high
temperature, thus the reaction rate would be low and the power density of cell decreased.

![Graph showing cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{1.95}$Nb$_{0.05}$O$_{6-\delta}$ cathode over the temperature range from 600 – 800°C.](image)

Figure 3.13 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{1.95}$Nb$_{0.05}$O$_{6-\delta}$ cathode over the temperature range from 600 – 800°C.

Figure 3.14 demonstrates the cell voltage and the cell performance of V-doped SFT cathodes with LSGM electrolyte operating at 800°C under humidified pure hydrogen as the fuel and ambient air as the oxidant. The maximum power density values are 106, 87, 78 and 17 mW·cm$^{-2}$ for SFTV05, SFTV1, SFTV2 and SFTV5, respectively. With small amount of V doped ($x = 0.05, 0.1$), the cell performance was improved and the best cell performance was achieved from SFTV05 because SFTV05 has the highest electrical conductivity and the lowest polarization resistance of the cathode reaction compared to the doping vanadium compositions. In addition, the impedance spectra for a SFTVx/ LSGM/ NiFe cell at 800°C are shown in Figure 3.15. It can be seen that the polarization resistance value of single cell with SFTV05, SFTV1, SFTV2 and SFTV5 cathodes are 0.89, 0.95, 1.01 and 2.37 Ω·cm2, respectively. It should be noticed that the polarization resistance of single cells increases with increasing the V content whereas the value of fuel cell performance decreases. Therefore, it can be
concluded that the cell performance was improved by the reduction of polarization resistance. And small amount of V and Nb doped on SFT improves the cell performance by reducing polarization resistance, enhancing ORR, and increasing conductivity. Furthermore, the maximum power density value and the polarization resistance value for SFTVx/LSGM/ NiFe cells are summarized in Table 3.6.

Figure 3.14 Cell voltage and power density as functions of current density for the single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) cathode at 800°C

Figure 3.15 Impedance spectra of single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{V}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) cathode at 800°C
Table 3.6 The maximum power density value and polarization resistance of a SFTVx/LSGM/NiFe cell at 800°C

<table>
<thead>
<tr>
<th></th>
<th>Maximum power density (mW·cm⁻²)</th>
<th>R_p (Ω·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFT</td>
<td>43</td>
<td>2.99</td>
</tr>
<tr>
<td>SFTV05</td>
<td>106</td>
<td>0.89</td>
</tr>
<tr>
<td>SFTV1</td>
<td>87</td>
<td>0.95</td>
</tr>
<tr>
<td>SFTV2</td>
<td>78</td>
<td>1.01</td>
</tr>
<tr>
<td>SFTV5</td>
<td>17</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Similar to the cell performance of Sr₂FeTi₁₀.₉₅Nb₀.₀₅O₆₋δ cathode over the temperature range from 600 – 800°C, the power density of single cell for Sr₂FeTi₁₀.₉₅V₀.₀₅O₆₋δ cathode decreased with decreasing temperature as shown in Figure 3.16. It can be seen that the maximum power density of Sr₂FeTi₁₀.₉₅V₀.₀₅O₆₋δ cathode are 106, 53, 44, 34 and 24 mW·cm⁻² at 800, 750, 700, 650 and 600°C, respectively.

Figure 3.16 Cell voltage and power density as functions of current density for the single cell with Sr₂FeTi₁₀.₉₅Nb₀.₀₅O₆₋δ cathode over the temperature range from 600 – 800°C.
3.4.2 Testing of single cell performance using $\text{Sr}_2\text{FeTi}_{1-x}\text{M}_x\text{O}_{6-\delta}$ ($\text{M} = \text{Nb}, \text{V}$) oxides as the anode material

The fuel cell performance of $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05, 0.1, 0.2, 0.5$) as anode was studied using cell configuration of SSC/LSGM/SFTNb cells. Figure 3.17 presents the cell voltage and the power density of the single cells with SFTNb anode as a function of current density measured at 800°C under wet hydrogen gas as the fuel and ambient air as the oxidant. It can be found that the materials can be used as the anode in SOFC and the maximum power density values of 60, 29, 23 and 16 mW·cm$^{-2}$ were obtained for SFTNb05, SFTNb1, SFTNb2 and SFTNb5, respectively. However, when compared the use of materials as cathode, it can be seen that the power density of anode was lower than the cathode. This could be because the materials have more oxygen vacancy which facilitates the ORR reaction and the migration of oxide in the cathode side. With high amount of Nb, the cell performance was reduced and the polarization resistance was drastically increased. This could be due to the difficulty in oxide ion diffusion at the anode. The polarization resistance from Nyquist plots of SSC/LSGM/SFTNb cell at 800°C is shown in Figure 3.18, as well as, Table 3.7 summarizes the polarization resistance value for single cell and the maximum power density value as anode of SFTNb anode at 800°C.

Figure 3.17 Cell voltage and power density as functions of current density for the single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) anode at 800°C
Figure 3.18 Impedance spectra of single cell with $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) anode at 800°C.

Table 3.7 The maximum power density value and polarization resistance of a SSC/LSGM/SFTNbx cell with different compositions at 800°C

<table>
<thead>
<tr>
<th>Composition</th>
<th>Maximum power density (mW·cm⁻²)</th>
<th>R_p (Ω·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFT</td>
<td>42</td>
<td>2.70</td>
</tr>
<tr>
<td>SFTNb05</td>
<td>60</td>
<td>1.53</td>
</tr>
<tr>
<td>SFTNb1</td>
<td>29</td>
<td>6.83</td>
</tr>
<tr>
<td>SFTNb2</td>
<td>23</td>
<td>5.69</td>
</tr>
<tr>
<td>SFTNb5</td>
<td>16</td>
<td>6.49</td>
</tr>
</tbody>
</table>

Figure 3.19 displays the cell voltage and power density as a function of current density for the single cell with $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_{6-\delta}$ anode in the temperature range of 600 – 800°C. The maximum power density of $\text{Sr}_2\text{FeTi}_{0.95}\text{Nb}_{0.05}\text{O}_{6-\delta}$ anode are 60, 38, 24, 11 and 5 mW·cm⁻² at 800, 750, 700, 650 and 600°C, respectively. It can also be observed that the power density decreased with decreasing temperature because the oxide ion diffusion is decreased.
Figure 3.19 Cell voltage and power density as functions of current density for the single cell with Sr$_2$FeTi$_{0.99}$Nb$_{0.05}$O$_{6-\delta}$ anode over the temperature range from 600 – 800°C

Similar to the SFTNbx results, Figure 3.20 displays the cell voltage and the cell performance of single cell for SFTVx as anode and SSC as cathode with LSGM electrolyte measured at 800°C under pure H$_2$ as the fuel and ambient air as the oxidant. Figure 3.21 exhibits the typical impedance Nyquist plot of SSC/LSGM/SFTVx single cells at 800°C. SFTVx can also be used as the anode and the values of maximum power density are 86, 49, 21 and 12 mW·cm$^{-2}$ for SFTV05, SFTV1, SFTV2 and SFTV5, respectively. The fuel cell performance increases with small amount of V doped by the reduction of polarization resistance and decreases with the increasing of V content. The increasing of cell performance and reducing of polarization resistance of low V-doped materials could be related with conductivity and structure of materials which facilitates electron migration. Summary of maximum power density value and polarization resistance value for difference compositions of SFTVx anode is presented in Table 3.8.
Figure 3.20 Cell voltage and power density as functions of current density for the single cell with $Sr_2FeTi_{1-x}V_xO_{6.5-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) anode at $800^\circ C$.

Figure 3.21 Impedance spectra of single cell with $Sr_2FeTi_{1-x}V_xO_{6.5-\delta}$ ($x = 0.00, 0.05, 0.10, 0.20, 0.50$) anode at $800^\circ C$.

Table 3.8 The maximum power density value and polarization resistance of a SSC/LSGM/SFTVx cell with different compositions at 800°C

<table>
<thead>
<tr>
<th>Composition</th>
<th>Maximum power density (mW·cm⁻²)</th>
<th>R_p (Ω·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFT</td>
<td>42</td>
<td>2.70</td>
</tr>
<tr>
<td>SFTV05</td>
<td>86</td>
<td>1.35</td>
</tr>
<tr>
<td>SFTV1</td>
<td>49</td>
<td>1.55</td>
</tr>
<tr>
<td>SFTV2</td>
<td>21</td>
<td>3.49</td>
</tr>
<tr>
<td>SFTV5</td>
<td>12</td>
<td>11.82</td>
</tr>
</tbody>
</table>

Figure 3.22 presents the cell voltage and power density as functions of current density for the single cell with Sr₂FeTi₁₀.₉₅V₀.₅₅O₆₋δ anode between 600 and 800°C. The maximum power density of Sr₂FeTi₁₀.₉₅V₀.₅₅O₆₋δ anode are 86, 63, 43, 25 and 14 mW·cm⁻² at 800, 750, 700, 650 and 600°C, respectively. Similar result to the cell performance of Sr₂FeTi₁₀.₉₅Nb₀.₅₅O₆₋δ anode, the power density of Sr₂FeTi₁₀.₉₅V₀.₅₅O₆₋δ anode decreased with decreasing temperature.

Figure 3.22 Cell voltage and power density as functions of current density for the single cell with Sr₂FeTi₁₀.₉₅V₀.₅₅O₆₋δ anode over the temperature range from 600 – 800°C.
In summary of this point, it can be concluded that SFTNb and SFTV can be used as either cathode or anode in SOFC. However, for the high power density of cell, the use of cathode is more preferable. In addition, only small amount of doped Nb and V in the range of 0.05 – 0.1 can enhance the cell performance.

3.4.3 Cell performance of symmetrical cell

The single cell performance testing of Nb-doped SFT and V-doped SFT demonstrate that for cathode, a small dopant of Niobium and Vanadium ($x = 0.05$) in SFT double perovskite displays the highest power density. Similarly, both SFTNb05 and SFTV05 exhibit the best cell performance for anode. Thus, SFTNb05 and SFTV05 was tested the fuel cell performance by using this sample as both anode and cathode with LSGM electrolyte. Figure 3.23 show the cell voltage and power density as a function of current density for SFT/LSGM/ SFT, SFTNb05/ LSGM/ SFTNb05 and SFTV05/ LSGM/ SFTV05 cells measured at 800°C under humidified hydrogen gas as the fuel and ambient air as the oxidant. It can be seen that the maximum power density value of symmetrical cell for SFT, SFTNb05 and SFTV05 are 19.54, 14.62 and 19.42 mW·cm2, respectively.

![Figure 3.23](image-url)
3.5 X-ray Photoelectron analysis

To understand the behavior of some electrochemical properties, the X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state of the element for $\text{Sr}_2\text{FeTi}_{1-x}\text{M}_x\text{O}_{6-\delta}$ ($M = \text{Nb}, \text{V}$) materials. The XPS spectra were deconvoluted by the CasaXPS program and the binding energy scale was calibrated against at 285.0 eV of the C 1s line.

3.5.1 XPS results of Nb-doped SFT double perovskites

![XPS spectra of Sr 3d for SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05, 0.10, 0.50$) at room temperature](image)

Figure 3.24 XPS spectra of Sr 3d for SFT and $\text{Sr}_2\text{FeTi}_{1-x}\text{Nb}_x\text{O}_{6-\delta}$ ($x = 0.05, 0.10, 0.50$) at room temperature
Figure 3.24 shows the Sr 3d core-level spectra for SFT, SFTNb05, SFTNb1 and SFTNb5 at room temperature and the fitting result. It can be seen that the Sr 3d spectra consists of two peaks; the peak at higher binding energy represents Sr 3d$_{3/2}$ peak and the peak at lower binding energy indicates Sr 3d$_{5/2}$ peak. In case of SFT sample, the Sr 3d peaks are 134.19 and 132.46 eV, respectively. While, the binding energy of Sr 3d$_{3/2}$ for SFTNb05, SFTNb1 and SFTNb5 are 134.63 and 133.00 eV, 134.52 and 132.89 eV, 134.57 and 132.88 eV, respectively. The binding energy of the Sr 3d peak corresponds to the strontium ions in Sr$^{2+}$ state, which is in good agreement with the work reported by W. yang et al. [90] and H. Zhang et al. [91].

Figure 3.25 XPS spectra of Ti 2p for SFT and Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.05, 0.10, 0.50) at room temperature
The XPS analyses of Ti 2p of the undoped and Nb-doped SFT oxide at room temperature are displayed in Figure 3.25. The deconvolution of each spectrum indicated the binding energy peaks of Ti 2p\textsubscript{1/2} and Ti 2p\textsubscript{3/2} around 463.64 and 457.89 eV, 464.13 and 458.39 eV, 463.89 and 458.20 eV, 463.88 and 458.09 eV for SFTNb\textsubscript{x} when x = 0.00, 0.05, 0.10, 0.50, respectively. However, B. Bharti et al. argues that the splitting peak of Ti 2p\textsubscript{1/2} and Ti 2p\textsubscript{3/2} demonstrated the binding energy at 464.4 and 458.6 eV, respectively, and these peaks are corresponding with Ti4+ ions [92]. G. Elipe et al. also reported the binding energy of Ti4+ 2p\textsubscript{3/2} in TiO\textsubscript{2}, around 458.5 eV [93]. Therefore, it can be indicated that the valence state of Ti ions in all studied samples are +4, without Ti3+ and Ti2+ [94, 95].

![Figure 3.26 XPS spectra of Nb 3d for SFT and Sr\textsubscript{2}Fe\textsubscript{1-x}Nb\textsubscript{x}O\textsubscript{6-δ} (x = 0.05, 0.10, 0.50) at room temperature](image)
The XPS Nb 3d spectra for SFTNb05, SFTNb1 and SFTNb5 at room temperature are presented in Figure 3.26. This XPS spectra split into two peaks: Nb 3d$_{5/2}$ and Nb 3d$_{3/2}$. The binding energy of Nb 3d$_{5/2}$ are ~207.00, 206.76 and 206.82 for SFTNb05, SFTNb1 and SFTNb5, respectively. These binding energy values of Nb 3d$_{5/2}$ peak were consistent with the values reported by B. Mei et al. for Nb$^{5+}$ ions in Nb-doped TiO$_2$ material, which the binding energy was 206.8 eV [96] as well as the Nb-doped SrTiO$_3$ demonstrates the binding energy at 207.0 eV for Nb$^{5+}$ 3d$_{5/2}$ [97]. It is noticed that niobium in SFTNbx ($x = 0.05, 0.10, 0.50$) samples mainly exhibit the pentavalent state [98, 99].

Figure 3.27 XPS spectra of Fe 2p for SFT and Sr$_2$FeTi$_{1-x}$Nb$_x$O$_{6-δ}$ (x = 0.05, 0.10, 0.50) at room temperature
Figure 3.27 presents the Fe 2p XPS spectra of SFT, SFTNb05, SFTNb1 and SFTNb5 at room temperature. After deconvolution, the Fe 2p spectra for all samples are consisted of two iron species, which are Fe$^{4+}$ and Fe$^{3+}$ ions. No characteristic peak of Fe$^{2+}$ is observed at ~709 (2p$_{3/2}$) and ~723 (2p$_{1/2}$) eV. For Fe 2p in SFT sample, the peaks of binding energy at 725.65 and 712.29 eV are assigned to Fe$^{4+}$ 2p$_{1/2}$ and Fe$^{4+}$ 2p$_{3/2}$, respectively. While, the core-level binding energy at 724.07 and 710.50 eV are determined to Fe$^{3+}$ 2p$_{1/2}$ and Fe$^{3+}$ 2p$_{3/2}$, respectively. Similarly, iron in Nb-doped SFT is in mixed valence state and the binding energy peaks of Fe$^{4+}$ 2p$_{1/2}$ and Fe$^{4+}$ 2p$_{3/2}$ are 725.55 and 712.33 eV, 725.95 and 712.47 eV, 726.41 and 712.65 eV for SFTNb05, SFTNb1, SFTNb5, respectively. For Fe$^{3+}$ 2p$_{1/2}$ and Fe$^{3+}$ 2p$_{3/2}$ in SFTNbx, the peaks of binding energy are 724.52 and 710.85 eV, 724.14 and 710.73 eV, 724.37 and 710.80 eV when $x = 0.05$, 0.10, 0.50, respectively. This is in good agreement with the results reported by J. Zhu et al. [100] and others [101, 102]. Furthermore, the satellite peaks of Fe 2p suggests the charge transfer from the anion valence band to the d band of Fe [103, 104]. This shake-up satellite peak has been found approximately between 718.8 – 719.2 eV, which is involved with the Fe 2p$_{3/2}$ [105]. Moreover, the increasing amount of large charge (Fe$^{4+}$) leads to the chemical shift to higher binding energy and changing of the satellite shape as in agreement with the report of M. Ghaffari et. al. [106]. The Fe$^{4+}$/Fe$^{3+}$ ratio was calculated based on the peak area and presented in Table 3.9. The increasing of Fe$^{4+}$/Fe$^{3+}$ ratio promotes the electron hopping between Fe$^{3+}$ and Fe$^{4+}$ [107], thus the electronic conductivity should be increased. In this work, it is clearly observed that the conductivity of SFTNb05 was increased with the higher Fe$^{4+}$ ratio, in comparison with SFT perovskite. When Nb content ($x = 0.10$) was increased, the decreasing of Fe$^{4+}$ ratio resulted in the lower conductivity of materials.
Table 3.9 Calculated Ratio of Fe 2p\textsubscript{3/2} for SFT and Sr\textsubscript{x}FeTi\textsubscript{1-x}Nb\textsubscript{x}O\textsubscript{6-δ} (x = 0.05, 0.10, 0.50) oxides

<table>
<thead>
<tr>
<th>Samples</th>
<th>Binding energy of Fe 2p\textsubscript{3/2} (eV)</th>
<th>Peak area of Fe 2p\textsubscript{3/2}</th>
<th>Ratio of Fe 2p\textsubscript{3/2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe3+</td>
<td>Fe4+</td>
<td>Fe3+</td>
</tr>
<tr>
<td>SFT</td>
<td>710.50</td>
<td>712.29</td>
<td>8625.04</td>
</tr>
<tr>
<td>SFT Nb05</td>
<td>710.85</td>
<td>712.33</td>
<td>9799.56</td>
</tr>
<tr>
<td>SFT Nb1</td>
<td>710.73</td>
<td>712.47</td>
<td>18485.37</td>
</tr>
<tr>
<td>SFT Nb5</td>
<td>710.80</td>
<td>712.65</td>
<td>29698.63</td>
</tr>
</tbody>
</table>

The O 1s XPS spectra of SFT, SFT Nb05, SFT Nb1 and SFT Nb5 at room temperature are shown in Figure 3.28. It is clearly seen that the deconvolution of broad O 1s spectra indicates two contributions. The first peak at lower binding energy ~ 528.5 – 530.0 eV corresponds to the lattice oxygen (O\textsubscript{L}), whereas the peak at higher binding energy ~ 531.0 – 531.5 eV is associated with the adsorbed oxygen (O\textsubscript{A}) [108-110]. In this case, the adsorbed oxygen is correlated with the surface oxygen vacancies [111]. Thus, the binding energy values at 529.10 eV, 529.62 eV, 529.55 eV and 529.57 eV for SFT, SFT Nb05, SFT Nb1 and SFT Nb5, respectively, are O2- species in the lattice and those at 531.20 eV, 531.53 eV, 531.40 eV and 531.43 eV are assigned to the adsorbed oxygen. The percentage between the absorbed oxygen and lattice oxygen was calculated based on the peak areas of each type and summarized in Table 3.10. SFT Nb05 sample has the highest percentage of adsorbed oxygen which means that SFT Nb05 has higher surface oxygen vacancies than other series, thus the electrochemical activity such as oxygen adsorption, oxygen dissociation, and surface exchange coefficient at ORR is better improved [112]. This result can explain the reason for the lower polarization resistance and higher power density of asymmetrical cell of SFT Nb05.
Figure 3.28 XPS spectra of O 1s for SFT and Sr$_x$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.05, 0.10, 0.50) at room temperature.

Table 3.10 Calculated ratio between adsorbed oxygen and lattice oxygen for SFT and Sr$_x$FeTi$_{1-x}$Nb$_x$O$_{6-\delta}$ (x = 0.05, 0.10, 0.50) oxides.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Binding energy of O 1s (eV)</th>
<th>Peak area of O 1s</th>
<th>$O_A / (O_A + O_L)$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O_L</td>
<td>O_A</td>
<td>O_L</td>
</tr>
<tr>
<td>SFT</td>
<td>529.10</td>
<td>531.20</td>
<td>19302.46</td>
</tr>
<tr>
<td>SFTNb05</td>
<td>529.26</td>
<td>531.53</td>
<td>12854.18</td>
</tr>
<tr>
<td>SFTNb1</td>
<td>529.55</td>
<td>531.40</td>
<td>22813.95</td>
</tr>
<tr>
<td>SFTNb5</td>
<td>529.57</td>
<td>531.43</td>
<td>37368.63</td>
</tr>
</tbody>
</table>

*[113]
3.5.2 XPS results of V-doped SFT double perovskites

![XPS spectra of Sr 3d for SFT and SFTV05 samples at room temperature](image)

Figure 3.29 XPS spectra of Sr 3d for SFT and SFTV05 samples at room temperature

The fitting results of the Sr 3d core-level spectra for SFT and SFTV05 perovskite materials are shown in Figure 3.29. The Sr 3d signal of SFTV05 displayed peaks at 134.19 and 132.48 eV for Sr 3d$_{3/2}$ and Sr 3d$_{5/2}$, respectively. These Sr 3d peaks are attributed to the strontium ions in Sr$^{2+}$ state.
Figure 3.30 XPS spectra of Ti 2p for SFT and SFTV05 samples at room temperature.

Figure 3.30 illustrates the XPS analyses of Ti 2p of SFT and SFTV05 oxides at room temperature. For SFTV05 sample, the doublet Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$ peak demonstrates the binding energy at 463.58 and 457.85 eV, respectively. These peaks are also consistent with Ti$^{4+}$ in perovskite lattice, similar to the Ti 2p XPS spectra of Nb-doped SFT oxides.

The V 2p is split into V 2p$_{3/2}$ and V 2p$_{1/2}$, but Figure 3.31 displays only the XPS analyses of V 2p$_{3/2}$ for SFTV05 perovskite oxide. The binding energy at 517.10 eV was assigned for V 2p$_{3/2}$ peak which corresponded with V in the +5 oxidation state, and in agreement with the value reported in literature of H.W. Liu et al. [114] and other [115]. That suggests V has been in cooperated in the structure.
Figure 3.31 XPS spectra of V 2p for SFTV05 sample at room temperature

Figure 3.32 XPS spectra of Fe 2p for SFT and SFTV05 samples at room temperature
Figure 3.32 presents the Fe 2p XPS spectra of SFT and SFTV05. For SFTV05 perovskite material, the peaks at the binding energy of 724.3 and 710.38 eV are attributed to Fe\(^{3+}\) 2p\(_{1/2}\) and Fe\(^{3+}\) 2p\(_{3/2}\), respectively. While the binding peaks of Fe\(^{4+}\) 2p\(_{1/2}\) and Fe\(^{4+}\) 2p\(_{3/2}\) appeared at 725.53 and 712.06 eV, respectively. Similar to the SFT oxide, the peak at ~719 eV of SFTV05 was assigned to the satellite peak for Fe 2p core level. Additionally, the Fe\(^{4+}\)/Fe\(^{3+}\) ratio of these samples was calculated as shown in Table 3.11. It can be also observed that the V-doped SFT with \(x = 0.05\) has lower Fe\(^{4+}\)/Fe\(^{3+}\) ratio than the SFT based perovskite due to the higher valence state of V\(^{5+}\) made the reduction of Fe\(^{4+}\) to Fe\(^{3+}\) to keep electroneutrality.

Table 3.11 Calculated Ratio of Fe 2p\(_{3/2}\) for SFT and SFTV05 oxides

<table>
<thead>
<tr>
<th>Samples</th>
<th>Binding energy of Fe 2p(_{3/2}) (eV)</th>
<th>Peak area of Fe 2p(_{3/2})</th>
<th>Ratio of Fe 2p(_{3/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe(^{3+})</td>
<td>Fe(^{4+})</td>
<td>Fe(^{3+})</td>
</tr>
<tr>
<td>SFT</td>
<td>710.50</td>
<td>712.29</td>
<td>8625.04</td>
</tr>
<tr>
<td>SFTV05</td>
<td>710.38</td>
<td>712.06</td>
<td>3407.44</td>
</tr>
</tbody>
</table>

Figure 3.33 XPS spectra of O 1s for SFT and SFTV05 samples at room temperature
Figure 3.33 shows the O 1s XPS spectra of SFT and SFTV05. The peak at the binding energy position of 529.06 eV corresponds to the adsorbed oxygen (O\textsubscript{A}), while peak at 531.14 eV are determined to the lattice oxygen (O\textsubscript{L}) in SFTV05 perovskite material. It can also be seen from Table 3.12 that the percentage of adsorbed oxygen of SFTV05 oxide is decreased compared with that of the based SFT oxide. Thus, the electrochemical performance of SFTV relates with the oxygen vacancy in lattice structure.

\textbf{Table 3.12 Calculated ratio between adsorbed oxygen and lattice oxygen for SFT and SFTV05 oxides}

<table>
<thead>
<tr>
<th>samples</th>
<th>Binding energy of O 1s (eV)</th>
<th>Peak area of O 1s</th>
<th>O\textsubscript{L}/ (O\textsubscript{A}+O\textsubscript{L}) [%]*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O\textsubscript{L}</td>
<td>O\textsubscript{A}</td>
<td>O\textsubscript{L}</td>
</tr>
<tr>
<td>SFT</td>
<td>529.10</td>
<td>531.20</td>
<td>19302.46</td>
</tr>
<tr>
<td>SFTV05</td>
<td>529.06</td>
<td>531.14</td>
<td>13244.45</td>
</tr>
</tbody>
</table>

*\[113\]

3.5 Thermal expansion

Thermal expansion coefficient (TEC) of material is also a significant property to enhance the SOFC cell performance because the mismatch of TECs between electrode and electrolyte during the operating temperature causes the excessive thermal stress on the materials, leading to the delamination in the electrode. Therefore, the TECs of electrode and electrolyte should have similar values in order to reduce the mechanical compatibility problem \[116, 117\]. Figure 3.34 shows the thermal expansion curves of SFT, SFTNb05 and SFTV05 from room-temperature to 1000\degree C in air atmosphere. These materials have similar thermal behavior as a linear correlation at low temperature (< 350\degree C) and nonlinear behavior due to an oxygen release in the perovskite structure with the generation of oxygen vacancies \[118-121\] at temperature greater than 350\degree C. However, the TEC values of Nb-doped SFT doesn’t different from that of SFT whereas the value slightly increases in case of doping V. The average TEC values of SFT,
SFTNb05 and SFTV05 from the temperature of 30 – 1000°C are 13.4151×10^{-6}, 13.8478×10^{-6} and 16.1762×10^{-6} K$^{-1}$, respectively. Compared to the LSGM electrolyte, the average TEC value of LSGM reported by Z. Wang et al. is 11.7×10^{-6} K$^{-1}$ [122], as a result, SFT and SFTNb05 electrodes are more compatible with LSGM electrolyte than SFTV05 electrode. The matching of electrode and electrolyte provides the use in long-term operation for the IT-SOFC electrode application. In contrast, the SFTV oxide is high thermal expansion than SFTNb05 oxides, therefore, the LSGM electrolyte cell with SFTV05 electrode may be cracked and delaminated in long term operating conditions easily. The reason for the high TEC value in SFTV may be related with higher oxygen in lattice compared to both SFT and SFTNb05, thus the increasing temperature can make the easier loss of oxygen from the lattice.

![Figure 3.34](image)

Figure 3.34 Thermal expansion curves of SFT, SFTNb05 and SFTV05 as a function of temperature in air

3.7 The chemical compatibility

The chemical compatibility between electrode and electrolyte is one of many factors to evaluate the SOFC performance because during operation, the interfacial chemical reaction of electrolyte with electrode material may produce the impurity phases, which probably increases the interfacial polarization resistance of the SOFC cell and may cause the degradation of the cell. Thereby, the chemical compatibility of SFT, SFTNb05 and SFTV05 oxides with LSGM electrolyte was performed by physical...
mixing of materials and electrolyte in the ratio of 1:1 and examined by XRD after heated the mixture to 900°C (temperature above the SOFC cell operating temperature) for 5 hours. Figure 35 – 37 indicate the XRD pattern of the mixture between LSGM powder and SFT, SFTNb05, SFTV05 oxides powder (1:1%wt ratio). It is clearly seen that the calcined mixtures show the structures of starting reactants, LSGM and double perovskite oxides of pure SFT, SFTNb05, SFTV05. There is also neither impurity phase nor peak shifting observed in the XRD pattern of the calcined mixtures. This means that SFT, SFTNb05 and SFTV05 oxides have a good chemical compatibility with LSGM perovskite as the electrolyte during the cell operation. Thus, this result demonstrated that the SFT, SFTNb05 and SFTV05 double perovskites are appropriate for SOFCs as the electrode material.

Figure 3.35 XRD pattern of SFT powder, LSGM powder and LSGM-SFT mixture calcined at 900°C for 5 hours in air
Figure 3.36 XRD pattern of SFTNb05 powder, LSGM powder and LSGM-SFTNb05 mixture calcined at 900°C for 5 hours in air.

Figure 3.37 XRD pattern of SFTV05 powder, LSGM powder and LSGM-SFTV05 mixture calcined at 900°C for 5 hours in air.
CHAPTER 4
CONCLUSION

4.1 Conclusion

The substitution of niobium and vanadium on titanium site in Sr$_2$FeTiO$_{6-\delta}$ (SFT) double perovskite has been investigated for conductivity and electrochemical performance as the electrode materials in IT-SOFT. Sr$_2$FeTi$_{1-x}$(Nb, V)$_x$O$_{6-\delta}$ ($x = 0.00 – 0.50$) oxides were synthesized by conventional solid state reaction with calcination at 1050°C and sintering at 1250°C for 12 hours. The X-ray diffraction analyses reveal that all metal-doped samples have the double perovskite structure and impurity phases of Sr(FeNb)$_{0.5}$O$_3$ and Sr$_3$(VO$_4$)$_2$ for Nb-doped SFT and V-doped SFT, respectively, however no impurity phases were found in SFTNb05 and SFTV05 oxides. The amount of these impurity phases also increased with increasing x ratio. The electrical conductivity and polarization resistance of SFT were 2.00 S·cm$^{-1}$ and 6.42 Ω·cm2, respectively. When Nb was substituted in SFT, the conductivity increased with the small amount of Nb doped and decreased with high amount of Nb, which relates to the Fe$^{4+}$/Fe$^{3+}$ ratio. The high Fe$^{4+}$/Fe$^{3+}$ ratio of SFTNb05 promoted the electrical conductivity of materials. For the Nb-doped series, SFTNb05 exhibited the highest conductivity around ~2.44 S·cm$^{-1}$. For V-doped perovskites, the conductivity was in similar trend with the Nb series and SFTV05 has higher electrical conductivity, which was ~ 3.93 S·cm$^{-1}$, than others. The thermal expansion behavior study indicated that the TEC value of SFT slightly increased with increasing metal dopant.

For the electrochemical performance test as cathode and anode in IT-SOFC under LSGM electrolyte, H$_2$ fuel gas and O$_2$ oxidant, the V and Nb doped materials were active to be used as both cathode and anode, and small amount of V and Nb doping doubly improved the cell performance of SFT. For asymmetric cell performance, the maximum power density of SFT cathode was ~ 42.61 mW·cm$^{-2}$ at 800°C whereas the maximum power densities of SFTNb05 and SFTV05 cathodes were 79 mW·cm$^{-2}$ and 106 mW·cm$^{-2}$, respectively. For asymmetrical cell performance as anode, the maximum power densities of SFTNb05 and SFTV05 were 60 mW·cm$^{-2}$ and
86 mW·cm$^{-2}$ at 800°C, respectively. However, the symmetrical cell test of both materials exhibit low performance value compared with the asymmetric cell. Furthermore, the chemical compatibility study revealed that SFT Nb05 and SFT V05 are compatible with LSGM electrolyte at 900°C for 5 hours. In conclusion, these primary results show that SFT Nb05 and SFT V05 have potentials to be used as electrode materials in asymmetric IT-SOFC and their property can be improved much better if some factors such as the mismatch in thermal expansion between electrode and electrolyte, type of electrolyte are eliminated.

4.2 Suggestion

From this work, the TECs of SFT Nb05 and SFT V05 perovskites are higher than LSGM electrolyte, thus the delamination due to the mismatch in thermal expansion behavior of electrode and electrolyte might be possible for the long-term operation. Therefore, the additional interlayer between LSGM and electrode can be a solution for reducing the TEC value and delamination of the cell.
REFERENCES

63. Zhou, Q., et al., Investigation of cobalt-free perovskite $\text{Sr}_2\text{FeTi}_0.75\text{Mo}_0.25\text{O}_{6-\delta}$ as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016. 74: p. 129-133.

64. Niu, B., et al., Performance of double perovskite symmetrical electrode materials $\text{Sr}_2\text{TiFe}_{1-x}\text{MoxO}_{6-\delta}$ (x = 0.1, 0.2) for solid oxide fuel cells. Electrochimica Acta, 2018. 263: p. 217-227.

66. Zhou, W., et al., Structural, electrical and electrochemical characterizations of $\text{SrNb}_0.1\text{Co}_0.9\text{O}_{3-\delta}$ as a cathode of solid oxide fuel cells operating below 600°C. International Journal of Hydrogen Energy, 2010. 35(3): p. 1356-1366.

67. Ding, L., et al., Promotion on electrochemical performance of a cation deficient $\text{SrCo}_{0.7}\text{Nb}_{0.1}\text{FeO}_{2.03-\delta}$ perovskite cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2017. 354: p. 26-33.

69. Akhtar, M.J. and R.T.A. Khan, Structural studies of SrFeO_3 and $\text{SrFe}_{0.5}\text{Nb}_{0.5}\text{O}_3$ by employing XRD and XANES spectroscopic techniques. Materials Characterization, 2011. 62(10): p. 1016-1020.

81. Mushtaq, M., et al., *Perovskite SrFe 1-x Ti x O 3-δ (x < = 0.1) cathode for Low Temperature Solid Oxide Fuel Cell*. 2018.

85. Cowin, P.I., et al., *Conductivity and redox stability of new perovskite oxides SrFe0.7TM0.2Ti0.1O3−δ (TM=Mn, Fe, Co, Ni, Cu).* Solid State Ionics, 2017. 301: p. 99-105.

87. Dai, N., et al., *Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs.* Journal of Materials Chemistry A, 2013. 1(45): p. 14147-14153.

101. Dong, X., W. Jin, and N. Xu, *Reduction-Tolerant Oxygen-Permeable Perovskite-Type Oxide Sr0.7Ba0.3Fe0.9Mo0.1O3−δ*. Chemistry of Materials, 2010. **22**(12): p. 3610-3618.

112. Lee, T.-H., et al., Robust NdBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material and its degradation prevention operating logic for intermediate temperature-solid oxide fuel cells. Journal of Power Sources, 2016. 331: p. 495-506.

VITA

NAME Ausa Potong
DATE OF BIRTH 28 March 1993
PLACE OF BIRTH Ratchaburi, Thailand
INSTITUTIONS ATTENDED Chulalongkorn University