Clinical evaluation of xylazine, lidocaine and ketamine intravenous infusion to reduce isoflurane requirement in Thai native cross-bred ponies

Juthamas Leklub

Aree Laikul

Kanittha Phetudomsinsuk

Follow this and additional works at: https://digital.car.chula.ac.th/tjvm

Part of the Veterinary Medicine Commons

Recommended Citation

Leklub, Juthamas; Laikul, Aree; and Phetudomsinsuk, Kanittha (2017) "Clinical evaluation of xylazine, lidocaine and ketamine intravenous infusion to reduce isoflurane requirement in Thai native cross-bred ponies," The Thai Journal of Veterinary Medicine: Vol. 47: Iss. 3, Article 2.

DOI: https://doi.org/10.56808/2985-1130.2839

Available at: https://digital.car.chula.ac.th/tjvm/vol47/iss3/2

This Article is brought to you for free and open access by the Chulalongkorn Journal Online (CUJO) at Chula Digital Collections. It has been accepted for inclusion in The Thai Journal of Veterinary Medicine by an authorized editor of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
Clinical evaluation of xylazine, lidocaine and ketamine intravenous infusion to reduce isoflurane requirement in Thai native cross-bred ponies

Juthamas Leklub1 Aree Laikul1 Kanittha Phetudomsinsuk*

Abstract

Balanced anesthesia in equine could reduce anesthetic-related fatalities. Sedative, anesthetic and analgesic agents currently available in Thailand such as xylazine, ketamine, isoflurane and lidocaine are extensively used in equine practice, but their combination has not been reported. The present study aimed to determine the minimum alveolar concentration (MAC) of isoflurane and clinical parameters in Thai native cross-bred ponies under general anesthesia. Six Thai native cross-bred ponies were examined by a random crossover method. They were categorized into 4 groups according to the maintenance of anesthesia which were isoflurane group (I), isoflurane and lidocaine group (IL), isoflurane, xylazine and ketamine group (IXK) and isoflurane, xylazine, lidocaine and ketamine group (IXKL). Tranquilization was performed with acepromazine (0.04 mg/kg IV), and sedation was performed with xylazine (0.8 mg/kg IV). Anesthesia was induced with ketamine (2 mg/kg IV) and diazepam (0.1 mg/kg IV), and maintained with isoflurane in oxygen and a constant rate infusion (CRI) of injectable drugs. Measurement parameters were heart rate (HR), respiratory rate (RR), mean arterial blood pressure (MAP), blood gases variables (pH, PaO2, PaCO2), end-tidal isoflurane concentration (ET-iso), end-tidal carbon dioxide concentration (ET-CO2), MAC and recovery scores. The MAC of isoflurane (mean±SD) in groups I, IL, IXK and IXKL were 0.74±0.2%, 0.67±0.2%, 0.45±0.2% and 0.16±0.1%, respectively. A significant (p<0.05) reduction of 78% was found when compared between groups I and IXKL. There was no significant difference in the blood gases variables and recovery scores in all groups. In conclusion, the loading dose of xylazine 0.8 mg/kg followed by infusion of 0.5 mg/kg/h, ketamine 2 mg/kg followed by infusion of 1 mg/kg/h, and lidocaine 1.5 mg/kg within 15 minutes followed by 50 µg/kg/min, combined with isoflurane could reduce isoflurane requirement in Thai native cross-bred ponies with good recovery quality.

Keywords: xylazine, lidocaine, ketamine, Thai native cross-bred ponies, MAC

1Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Phanom, Nakhon Pathom, 73140
*Correspondence: fvetktp@ku.ac.th

Introduction

In horses, general anesthesia has much higher mortality rate compared to anesthesia in humans and small animals (Johnson et al., 2002; Bidwell et al., 2007; Senior, 2013). To easily control anesthetic depth, inhalation agents such as isoflurane are usually used to withstand long operation and make a fast recovery (Steffey et al., 1977; Pöppel et al., 2014). Despite their benefits, inhalation agents have low analgesic effect. The use of high dosage of inhalation agents to maintain an adequate anesthetic depth leads to dose-dependent cardiopulmonary depression (Enderle et al., 2008; Villalba et al., 2011); in this case analgesic agents are proved useful. The analgesic effects could reduce the use of inhalant concentration and increase safety for horses. The combination of inhalation and injectable agents has synergistic effects and provides suitable anesthetic depth to surgery even in a long period, in contrast to the accumulation of one agent which might lead to the occurrence of side effects on the cardiopulmonary system and prolonged recovery (Spadavecchia et al., 2002; Kushiro et al., 2005). The requirement determination of inhalational anesthetic agents and analgesia is expressed with the minimum alveolar concentration (MAC). MAC, defined as the minimum alveolar concentration of volatile anesthetic drugs at 1 atmosphere (at sea level 760 mmHg), prevents purposeful movement in response to noxious stimulus in 50 percent of animals for surgical anesthesia maintenance. Therefore, MAC value is the index of inhalation anesthetic potency.

There are many studies which previously reported the use of constant rate infusion of analgesic drugs in horses. One of the local anesthetic agents commonly used is lidocaine, which is considered as a drug in the amide group (Enderal et al., 2008). Metabolization of lidocaine occurs in the liver and excretion through urine (Gozalo-Marcilla et al., 2014). Lidocaine is used to reduce some side effects such as intestinal prokinetic activity and minimize cardiovascular effects (Valverde, 2013). In many species, lidocaine CRI has been investigated in terms of its effects on MAC such as dogs (Valverde et al., 2004; Matsubara et al., 2009), horses (Dzikiti et al., 2003) and calves (Vesal et al., 2011). It helps decrease the use of isoflurane in horses, halothane in ponies and also minimize alveolar concentration of sevoflurane in horses by 24-25% (Doherty and Frazier, 1998), 15-20% (Dzikiti et al., 2003) and 26.7% (Rezende et al., 2011).

Ketamine is a dissociative anesthetic agent. It has many effects such as analgesia, amnesia and central sympathomimetic effects (Bettchaart-Wolensberger and Larenza, 2007). It helps decrease MAC of halothane and the use of isoflurane by 15-37% (Muir and Sams, 1992) and 12% (Pöppel et al., 2014). Moreover, by stimulating the sympathetic nervous system, it helps improve cardiovascular parameters. During isoflurane anesthesia, the combination of ketamine and lidocaine for partial intravenous anesthesia is proved useful when compared to the stand-alone use of isoflurane. However, it has little inferiority in recovery phase (Enderle et al., 2008; Villalba et al., 2011).

Alpha2-adrenoceptor agonists, such as xylazine, are drugs with effective sedative and analgesic effects (Gozalo-Marcilla et al., 2015). They can reduce the requirement of anesthetic inhalant either by single injection or CRI (Steffey et al., 2000; Ringer et al., 2007). The combination of xylazine and ketamine can lead to a slight increase in arterial blood pressure and respiratory acidosis from respiratory rate reduction (Mama et al., 1998). In horses, xylazine has an effect on the circulatory system including bradycardia and reduces blood pressure (England and Clarke, 1996). However, if used with inhalational anesthetic agents, it affects the cardiopulmonary system (Teixeira et al., 2004).

This study aimed to determine the minimum alveolar concentration (MAC) of isoflurane, clinical parameters and quality of recovery in Thai native cross-bred ponies under general anesthesia with four categories of maintenance anesthesia.

Materials and Methods

The study was in regard to the animal testing regulations and ethics of the Faculty of Veterinary Medicine, Kasetsart University.

Animals: Six clinically healthy Thai native cross-bred ponies (2 geldings and 4 mares), aged between 4.5-7 years, with the height of 118±5.3 cm (mean±SD) and the weight of 248±42 kg (mean±SD), were used in this study. All ponies were determined to be healthy based on physical examination and normal ranges for hematology and serum chemistry. They were housed under field conditions and fed on Pangola hay and commercial concentrates. Each pony was anesthetized on four different occasions using a randomized crossover design, with a washout period of two weeks between treatments (Nóbraga et al., 2013). The experiment was conducted at the Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom (an average elevation of 7.46 m above sea level).

Anesthetic technique: Food was withheld overnight but all ponies had free access to water. During the induction process, all ponies were premedicated with acepromazine (Combistress® 20 mg; Phenix Pharmaceuticals N.D., Antwerp, Belgium), 0.04 mg/kg was intravenously injected (IV), followed by xylazine (X-LAZINE® 20 mg; L.B.S. Labolatory LTD., Bangkok, Thailand), 0.8 mg/kg IV after 15 minutes. Then, after peak sedation occurred, a combination of 0.1 mg/kg diazepam (Ropam® 5 mg; L.B.S.Labolatory LTD., Bangkok, Thailand) and 2.0 mg/kg ketamine (Ketamill®, Troy Labolatory PTY., Australia) was intravenously injected. The anesthetized ponies were then placed in dorsal recumbency, endotracheal intubation was performed. General anesthesia (GA) was maintained with isoflurane at the rate of 5 L/min of oxygen using a circle rebreathing system anesthetic machine (MatrixVML®; LesWilkins&Associates INC., Seattle, WA) and CRI of injectable agents in each individual group was given via infusion pump (Mindray 600I infusion pump, NP Intertrade CO., Bangkok, Thailand). After GA induction, one of the 4 treatments was randomly administered as follows:
group I, ponies were given lactate ringer’s solution at the rate of 5 mg/kg/h; group IL, ponies were given a loading dose of lidocaine (Locana®; L.B.S. Labolatory LTD., Bangkok, Thailand), 1.5 mg/kg over 15 minutes after the induction, followed by CRI, 50 µg/kg/min; group IXK, ponies were given CRI of xylazine, 0.5 mg/kg/h, and CRI of ketamine, 1 mg/kg/h; group IXKL, ponies were given xylazine and ketamine at the same rate as group IXK and lidocaine at the same rate as group IL.

During the experiment, dopamine might be administered to ponies which had MAP less than 60 mmHg. CRI of dopamine, 0.25 µg/kg/min, was intravenously given until MAP reached 80 mmHg.

Monitoring: Invasive mean arterial blood pressure was measured by a sphygmomanometer (KTJ-20 Aneroid sphygmomanometer; Wuxi Medical Instrument Factory, Shanghai, China). RR, ET-CO₂ and ET-iso were measured by an infrared gas analyzer (PM-9000 vet; Mindray Medical International, Bangkok, Thailand) which was connected to an endotracheal tube. MAP, ET-CO₂ and ET-iso were recorded after induction (T₀) and every 5 minutes (T₀, T₅ and so on). HR and RR were recorded before induction, after induction (T₀) and every 5 minutes thereafter (before, T₀, T₅, T₁₀ and so on). Arterial blood gases and pH were measured at T₀ and every 30 minutes thereafter (T₀, T₃₀ and so on). Arterial blood was anaerobically withdrawn, collected using heparinized syringes and analyzed immediately by a blood gas analyzer (Stat profil® pHOx® plus; Nova Biomedical Corporation, USA). The ended recovery status from anesthesia was scored based on the quantitative 10 scoring system according to Donaldson et al. (2000) by the same anesthetist throughout the study.

Determination of MAC: At the first hour of anesthesia, ET-iso was maintained at 1% in group I and at 0.8% in the other groups, and then isoflurane concentration was adjusted in order to study MAC in the next hours. To determine the MAC value, a noxious electrical stimulation (SD9 stimulator, Natus Neurology, Inc., Warwick, RI, USA) was used. The oral mucous membrane was stimulated with 50 V, 5 Hz of frequency and the pulse width of 10 ms via an alligator clip for 60 seconds until a positive response occurred (Villalba et al., 2011). The positive response according to stimulation was declared by the movement of the head or legs of the pony. On the other hand, muscle spasms or muscle cramps indicated a negative response. Results of the response would lead to the adjustment of ET-iso to determine the MAC value. If a negative response was found, the ET-iso would be decreased by 0.2% until a positive response was shown. In contrast, the ET-iso would be increased by 0.2% when a positive response was found and would be increased continously until no response was found. After every step in the anesthetic concentration, it was needed to wait for at least 20 minutes to maintain the equilibrium. Level of MAC was measured in duplicate in each pony. Final measurement MAC value (mMAC) was calculated by the average of the maximum ET-iso which the pony responded to the noxious stimulation and the minimum ET-iso which the pony had no response to the stimulation at all.

MAC value at the sea level (seaMAC) was calculated by multiplication of mMAC and atmospheric pressure at experimental site (exP), 764 mmHg, and divided by atmospheric pressure at the sea level (seaP), 760 mmHg, as shown in the following equation according to Villalba et al. (2011),

\[
\text{seaMAC} = \frac{\text{mMAC} \times \text{exP}}{\text{seaP}}
\]

Recovery: After the experiment completed, all injectable agents for maintenance of GA were discontinued. The ponies were then moved to a recovery room, stayed in lateral recumbency. Endotracheal extubation was done when the pony had swallowing reflex. The assisted recovery technique was used during the recovery period. Recovery quality was assessed, interpretation of the results of the scoring system was based on the method of Donaldson et al. (2000). Total time of anesthesia, time to extubation, time to sternal recumbency, time of sternal to standing, time to standing and frequency of attempts to stand up were recorded.

Statistical analysis: Statistical analysis in this study was run on NCSS 2007 software (Kaysville, Utah). All of the data were shown in the form of mean±standard deviation. Kolmogorov-Smirnov test was employed to determine whether data were normally distributed. Comparison of HR, RR, MAP, ET-iso and ET-CO₂ between each group was revealed by generalized linear model (GLM). One-way ANOVA was used to compare MAC and recovery scores between each group. The repeated measure ANOVA was used to compare pH, PaO₂ and PaCO₂ in each period of time between each group. Statistical significance was interpreted as p-value <0.05 in all tests.

Results

The average of total time of anesthesia in groups I, IL, IXK and IXKL were 139±21.5, 145±24.9, 137.5±19.2 and 162.5±11.3 minutes, respectively.

There was no significant difference between the averages of HR in groups I and IL. However, the averages of HR in groups I and IL were significantly higher than those of groups IXK and IXKL. There were significant differences in the averages of RR between groups I and IXKL, IXK and IXKL, and IL and IXK. The average of MAP in group IXKL was the lowest, while there was no significant difference among those of groups I, IL and IXK, as shown in Table 1. The minimum ET-iso was achieved at T75 in group I (0.73±0.16%), at T70 in groups IXK (0.36±0.15%) and IL (0.65±0.09%) and at T110 in group IXKL (0.14±0.05%) (Figure 1). The average of ET-iso in group I was significantly higher than those of the others, however, there was no significant difference between groups IXK and IXKL. The averages of ET-CO₂ among groups I, IL and IXK were significantly different, as shown in Table 1. Significant differences of the averages of MAC among groups I (0.74±0.2%), IXK (0.45±0.2%) and IXKL (0.16±0.1%) were found, as shown in Table 2. No significant difference of the averages of pH, PaO₂ and
PaCO$_2$ was found between each group, as shown in Table 3.

There was no significant difference in the averages of recovery scores between each group (p=0.07) and also in the averages of time to extubation, time to sternal recumbency, sternal-to-standing time, time to standing and frequency of attempts to stand up, as shown in Table 4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Cardiovascular and respiratory parameters during anesthetic administration in 6 Thai native cross-bred ponies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Group</td>
</tr>
<tr>
<td>HR (beats minute$^{-1}$)</td>
<td>I</td>
</tr>
<tr>
<td>RR (breath minute$^{-1}$)</td>
<td>II</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>IXK</td>
</tr>
<tr>
<td>ET-iso (%)</td>
<td>IXKL</td>
</tr>
</tbody>
</table>

Data are expressed as mean±SD. HR, heart rate; RR, respiratory rate; MAP, mean arterial blood pressure; ET-iso, end-tidal isoflurane concentration; ET-CO$_2$, end-tidal carbon dioxide concentration.

Values collected in 1 atmosphere at sea level (seaMAC; 760 mmHg)

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Individual mean and group (mean±SD) seaMAC values for isoflurane in 6 Thai native cross-bred ponies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>pony 1</td>
</tr>
<tr>
<td>I</td>
<td>59.46±6.37</td>
</tr>
<tr>
<td>IL</td>
<td>72.52±5.56</td>
</tr>
<tr>
<td>IXK</td>
<td>86.57±59.35</td>
</tr>
<tr>
<td>IXKL</td>
<td>95.18±70.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Blood gas values at different points of time after induction of anesthesia from 6 Thai native cross-bred ponies. Data are expressed as mean±SD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>T0</td>
</tr>
<tr>
<td>pH</td>
<td>I</td>
</tr>
<tr>
<td>IL</td>
<td>7.44±0.03</td>
</tr>
<tr>
<td>IXK</td>
<td>7.46±0.03</td>
</tr>
<tr>
<td>IXKL</td>
<td>7.44±0.04</td>
</tr>
<tr>
<td>PaO$_2$ (mmHg)</td>
<td>I</td>
</tr>
<tr>
<td>IL</td>
<td>72.52±5.56</td>
</tr>
<tr>
<td>IXK</td>
<td>86.57±59.35</td>
</tr>
<tr>
<td>IXKL</td>
<td>95.18±70.56</td>
</tr>
<tr>
<td>PaCO$_2$ (mmHg)</td>
<td>I</td>
</tr>
<tr>
<td>IL</td>
<td>46.05±5.87</td>
</tr>
<tr>
<td>IXK</td>
<td>45.15±8.62</td>
</tr>
<tr>
<td>IXKL</td>
<td>43.95±8.53</td>
</tr>
</tbody>
</table>
Table 4 Quality of recovery and recovery time of 6 Thai native cross-bred ponies anesthetized with isoflurane alone (I), isoflurane-lidocaine (IL), isoflurane-xylazine-ketamine (IXK) or isoflurane-xylazine-ketamine-lidocaine (IXKL). Data are expressed as mean±SD.

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>IL</th>
<th>IXK</th>
<th>IXKL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time of anesthesia (min)</td>
<td>139±21.5</td>
<td>145±24.9</td>
<td>137±19.2</td>
<td>162±11.3</td>
</tr>
<tr>
<td>Recovery scores</td>
<td>19.7±4.6</td>
<td>26.7±11.4</td>
<td>19.3±7.2</td>
<td>31.0±8.8</td>
</tr>
<tr>
<td>Time to extubation (min)</td>
<td>3.7±2.0</td>
<td>3.3±1.5</td>
<td>4.7±2.6</td>
<td>4.5±1.6</td>
</tr>
<tr>
<td>Time to sternal recumbency (min)</td>
<td>7.2±5.8</td>
<td>6.0±3.1</td>
<td>10.7±8.5</td>
<td>13.5±12.5</td>
</tr>
<tr>
<td>Time to sternal recumbency to standing up (min)</td>
<td>2.2±3.9</td>
<td>5.2±4.8</td>
<td>1.3±1.5</td>
<td>5.3±7.3</td>
</tr>
<tr>
<td>Time to standing up (min)</td>
<td>9.7±5.9</td>
<td>11.2±5.8</td>
<td>12.2±8.0</td>
<td>18.7±12.0</td>
</tr>
<tr>
<td>Frequency of attempts to standing up</td>
<td>1±0</td>
<td>3.2±3.7</td>
<td>1.5±0.8</td>
<td>2.8±2.7</td>
</tr>
</tbody>
</table>

Discussion

Six healthy Thai native cross-bred ponies were used as subjects in this study. The randomized crossover design was employed to divide the ponies into 4 groups according to the drug applied during maintenance anesthesia. Each treatment in the experiment was performed for 14 days to prevent the persistence of drug residues among the subjects according to Nóbrega et al. (2013) and to control and prepare external factors which were related to the experiment such as premedication agents and anesthetic induction agents, including setting room temperature at 25°C. Valverde (2013) revealed that CRI of xylazine and ketamine were given at 0.12-1.00 and 1.0-3.6 mg/kg/h, respectively. The CRI of xylazine (0.5 mg/kg/h) and ketamine (1.0 mg/kg/h) in this study kept the ponies under adequate depth of anesthesia without any complications, similar to other studies (Bettchart-Wolfensberger and Larenza, 2007; Valverde, 2013). The loading dose of lidocaine, 1.5 mg/kg, in the first 15 minutes followed by CRI, 50 µg/kg/min, was within the range from previous reports (Dzikiti et al., 2003; Ringer et al., 2007). This dosage was selected in attempt to avoid side effects and toxicity that could occur when lidocaine was given intravenously.

Maintaining general anesthesia in the first hour of the study at 1% ET-isoo in group I and at 0.8% ET-isoo in the other groups showed that these concentrations were adequate for the beginning of the response test by noxious electrical stimulation because no positive response from any ponies in the first trial was found.

The study of Kemphen et al. (2012) reported that MAC of isoflurane in horses was 1.3%. In this study, the MAC of isoflurane in Thai native cross-bred ponies was 0.74±0.2%, which is lower than the results of the study of Spadavecchia et al. (2010) in miniature ponies (1±0.2%). The combination of isoflurane and injectable anesthetic agents could decrease the requirement of isoflurane concentration, but the MAC of isoflurane between groups I and IL in this study was not significantly different. In contrast, Diessen (2005) reported 25% decrease in MAC of isoflurane. However, the ET-iso in group IL (0.72±0.1%) was significantly decreased when compared to group I (0.8±0.2%). In addition, there was a significant reduction of 78% between the MAC of isoflurane in group I (0.74±0.2%) and group IXKL (0.16±0.1%). This result matches up with that of Kemphen et al. (2012), who studied the effect of the combination of medetomidine, ketamine and lidocaine by CRI together with isoflurane in surgery. They found that the end-tidal isoflurane concentration was 0.65% in the treatment group.

One problem occurred during the step of changing isoflurane concentration to below 0.20% in group IXKL. The vaporizer used in this study had no scale indicating between 0.00% and 0.20%. Thus, the average MAC of this group (0.16%) might not be an accurate value and slightly less than the actual concentration.

Steffey et al. (1987) reported that, in the case of isoflurane induction in a horse without a ventilator for 5 hours, MAP was increased in the first hour and reduced gradually in the next hours, similar to the results found in the present study. No complication which needed the administration of dopamine, such as hypotension and bradycardia, occurred throughout the entire experiment. HR and MAP of group IL were not significantly different from those of group I. Moreover, HR was stable at all times in group IL. It demonstrated that lidocaine did not affect the change in heart rate; similar to the study of Dzikiti et al. (2003), which used a loading dose of lidocaine of 2.5 mg/kg, followed by CRI at 50 µg/kg/min, combined with isoflurane inhalation in horses. Feary et al. (2005) also found that lidocaine had a slight effect on heart rate and blood pressure, even though the dosage used in this study differed from others (loading dose of lidocaine of 1.3 mg/kg, followed by CRI at 50 µg/kg/min, together with sevoflurane inhalation). Furthermore, HR of groups IXK and IXKL were not different, which confirms that the dosage of lidocaine used in this study did not affect the heart rate.

Ketamine has pharmacological effects on the cardiovascular functions. The heart is stimulated by the sympathetic nervous system, which leads to the inhibition of catecholamine secretion and then affects the rise of the heart rate and blood pressure (Gozalo-Marcilla et al., 2014). In practice, ketamine is usually used in combination with other injectable agents such as alpha-2-adrenergic agonist, or inhalational anesthetic agents, to reduce the risk of side effects on the cardiovascular system (Mason, 2004). Pöppel et al. (2014) conducted a study of the administration of ketamine and xylazine, both at 1 mg/kg/h, in horses with isoflurane inhalation. The results showed that the heart rate in the xylazine group was lower than in the ketamine group, unlike the blood pressure, which was higher. Similarly, groups IXK and IXKL in this study had significantly lower HR than group I. This might be the major effect of xylazine which decreased the heart...
rate. Also, the combination of xylazine and ketamine decreased the ketamine effect on the heart.

In this study, the experiment was performed without a ventilator. This is the reason why all ponies had high CO₂ in blood circulation. The results agree with the study of Steffey et al. (1987), which found that the limitation of respiratory function raised PaCO₂. In the current study, RR and ET-CO₂ were in the normal ranges, which indicated that the isoflurane concentration used in this study did not affect the respiratory system. No significant difference in RR between groups IL and I was found. However, the excretion level of carbon dioxide was as high as that level in hypercapnia. ET-CO₂ in group IL was higher than that of group IXKL, although no difference of RR was found (8±1 and 8±2 bpm, respectively). This phenomenon indicates that lidocaine affects the respiratory system or, in other words, the excretion of carbon dioxide. Moreover, RR and ET-CO₂ in group IX were significantly lower than those in group IXKL, which indicates that the dose of xylazine and ketamine did not suppress the respiratory functions. Respiratory complications such as hypoventilation and apnea did not occur during the entire experiment.

No difference in every parameter related to recovery quality between each group in this study was found. The ponies could recover and stand up within 10 minutes in group I and within 20 minutes in the other groups. Moreover, no physiological complication was found. The assisted recovery technique helped the recovery process go smoothly in addition to gentle temperament of the ponies. Normally, anesthetic induction with inhalational anesthetic agents tends to cause uncoordinated movement and myasthenia compared to induction with injectable agents which provides better recovery quality. Nowadays, CRI of lidocaine is used frequently in horses both during and after anesthetic induction. However, it also affects their quality of recovery. Horses have a high risk to experience ataxia during the recovery period (Clark-Price, 2013). In this study, inhalational anesthetic agent was withheld from the ponies 5 minutes after all MAC was recorded. It was found that one pony from group IL showed ataxia. This result might relate to the toxicity of lidocaine. Group IXKL had the highest recovery scores. Group IL had higher recovery scores than group I which had similar recovery scores to group IXK. However, no significant difference between each group was detected. This might be the effect of the combination of lidocaine and ketamine for a long duration which led to the occurrence of ketamine side effects such as muscle stiffness, excitation, and ataxia, similar to a previous report (Gozalo-Marcilla et al., 2014). From the results of the current study, lidocaine might be mainly responsible for the quality of recovery because it was given until the end of anesthesia. This increased the chance of getting ataxia and prolonged recovery duration, including a trend to decrease the quality of recovery (Dzikiti et al., 2003; Valverde et al., 2005; Nóbrega et al., 2013). Although lidocaine and ketamine have adverse effects when separately administered at high dose, the combination of lidocaine and ketamine, as shown in the present study, was able to maintain good intraoperative cardiopulmonary functions. However, the recovery quality in the combination of lidocaine and ketamine group was not smoother than the other treatment groups, and there was no significant difference in recovery score among all experimental groups. This study did not determine the concentration of lidocaine and ketamine in blood circulation, thus it could not be explained if the ponies received lidocaine to the level of intoxication. The combination of lidocaine, ketamine and xylazine could be administered for ponies. It is recommended to discontinue CRI of lidocaine, ketamine and xylazine combination 15-30 minutes prior to the end of anesthesia because it decreases the risk of side effects and toxicity from the injectable agents (Gozalo-Marcilla et al., 2014), or to administer the sedative agents after the withdrawal of inhalational anesthetic agents to make the horses calm and allow more time for recovery in order to get rid of the inhalant from the body as much as possible (Santos et al., 2003).

In conclusion, the combination of the loading dose of 0.8 mg/kg xylazine followed by 0.5 mg/kg/h CRI, or 2 mg/kg ketamine followed by 1 mg/kg/h CRI, or 1.5 mg/kg lidocaine followed by 50 µg/kg/min CRI, together with isoflurane inhalation could maintain surgical plane of general anesthesia in healthy Thai native cross-bred ponies, with no life-threatening complications.

Acknowledgements

The authors gratefully acknowledge all support from the staff members of Equine Clinic, Kasetsart University Veterinary Teaching Hospital, Kamphaeng Saen, Nakhon Pathom. Also, we would like to thank Dr. Chaithep Poolkhet, Department of Veterinary Public Health, Kasetsart University for the statistical analysis. This study was supported by a grant from Faculty of Veterinary Medicine, Kasetsart University.

References

บทคัดย่อ
การประเมินทางคลินิกการใช้ไซลาซีนร่วมกับลิโดเคนและเคตามีนที่ให้ผ่านเส้นเลือดดำ อย่างต่อเนื่องเพื่อลดการใช้ไอโซฟลูเรนในม้าพื้นเมืองไทย

จุฑามาศ เล็กลับ 1 อารีย์ ไหลกุล 1 ขนิษฐา เพชรอุดมสินสุข 1*

การวางยาสลบแบบใช้ยาร่วมกันหลายชนิดช่วยลดอัตราการตายเนื่องจากการวางยาสลบในม้าได้ ยาซึม ยาสลบ และยาลดปวดมีใช้อย่างแพร่หลายในงานรักษาภายในประเทศไทย เช่น ไซลาซีน เคตามีน ไอโซฟลูเรน และลิโดเคน อย่างไรก็ตามยังไม่มีรายงานของการใช้ยาเหล่านี้ร่วมกัน การศึกษานี้มีวัตถุประสงค์เพื่อประเมินค่าความเข้มข้นของไอโซฟลูเรนในยุคล сообщаетที่ต่ำสุด (MAC) และค่าทางคลินิกในม้าพื้นเมืองไทยที่อยู่ภายใต้ยาสลบ กลุ่มตัวอย่างมีจำนวน 6 ตัวและทำการทดลองสักระหว่าง 4 กลุ่ม คือการใช้ยาสลบแบบฉีดผ่านเส้นเลือดดำ (กลุ่ม I), ใช้ยาสลบแบบฉีดผ่านเส้นเลือดดำร่วมกับไอโซฟลูเรน (กลุ่ม IL), ใช้ยาสลบแบบฉีดผ่านเส้นเลือดดำร่วมกับไซลาซีน (กลุ่ม IX), และใช้ยาสลบแบบฉีดผ่านเส้นเลือดดำร่วมกับไอโซฟลูเรนและไซลาซีน (กลุ่ม IXKL).

การศึกษาได้ทำการสุ่มเลือกม้าจากศูนย์สุราษฎร์ และศูนย์ยมราชศึกษา ที่มีอายุไม่เกิน 5 ปี และน้ำหนักมากกว่า 300 กิโลกรัม จำนวน 6 ตัว และทำการทดลองในกลุ่ม 4 กลุ่ม ที่มีการใช้ยาสลบแบบฉีดผ่านเส้นเลือดดำดังต่อไปนี้:

- กลุ่ม I: ใช้ไอโซฟลูเรนสูงสุด (0.04 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมง)
- กลุ่ม IL: ใช้ไอโซฟลูเรนร่วมกับลิโดเคน (0.8 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมง)
- กลุ่ม IX: ใช้ไอโซฟลูเรนร่วมกับไซลาซีน (0.8 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมง)
- กลุ่ม IXKL: ใช้ไอโซฟลูเรนร่วมกับไซลาซีน และลิโดเคน (0.8 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมง)

ค่าความเข้มข้นของไอโซฟลูเรนในยุคล сообщаетที่ต่ำสุด (MAC) คัดแยกเป็น 2 กลุ่ม คือ กลุ่ม I และกลุ่ม IXKL โดยใช้การวิเคราะห์ค่า p-value ได้ต่ำกว่า 0.05 สามารถสรุปได้ว่าการใช้ไซลาซีน 0.8 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมง และลิโดเคน 0.8 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมงสามารถลดความเข้มข้นของไอโซฟลูเรนได้ในกลุ่ม IXKL มีค่า MAC ที่ต่ำกว่า กลุ่ม I.

ผลการทดลองได้ระบุว่า การใช้ไอโซฟลูเรนระดับสูงสุด (0.04 มิลลิกรัมต่อกิโลกรัมต่อชั่วโมง) สามารถทำให้การเต้นของหัวใจ ความดันโลหิต และอัตราการหายใจลดลง แต่ไม่สามารถทำให้การหายใจลดลงได้ตามที่หวังไว้

c่าสำคัญ: ไอโซฟลูเรน ลิโดเคน ไซลาซีน ค่าความเข้มข้นของไอโซฟลูเรน (MAC)

1 ภาควิชาวิทยาศาสตร์สัตวแพทย์ศัพท์ คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ กาญจนบุรี 73140
2 ผู้รับผิดชอบบทความ E-mail: fvetktp@ku.ac.th