The Thai Journal of Veterinary Medicine

Volume 45
Issue 1 March, 2015

3-1-2015

An Inactivated Vaccine for Prevention and Control of Inclusion Body Hepatitis in Broiler Breeders

Sucheeva Junnu
Preeda Lertwatcharasarakul
Siriluk Jala
Sakuna Phattanakulanan
Angkasiya Monkong

See next page for additional authors

Follow this and additional works at: https://digital.car.chula.ac.th/tjvm

Part of the Veterinary Medicine Commons

Recommended Citation
Junnu, Sucheeva; Lertwatcharasarakul, Preeda; Jala, Siriluk; Phattanakulanan, Sakuna; Monkong, Angkasiya; Kulprasertsi, Sittinee; Thivalai, Chotiga; Chakritbudsabong, Warunya; Chaichoun, Kridsada; and Songserm, Thaweesak (2015) "An Inactivated Vaccine for Prevention and Control of Inclusion Body Hepatitis in Broiler Breeders," The Thai Journal of Veterinary Medicine: Vol. 45: Iss. 1, Article 16.
DOI: https://doi.org/10.56808/2985-1130.2627
Available at: https://digital.car.chula.ac.th/tjvm/vol45/iss1/16

This Article is brought to you for free and open access by the Chulalongkorn Journal Online (CUJO) at Chula Digital Collections. It has been accepted for inclusion in The Thai Journal of Veterinary Medicine by an authorized editor of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
An Inactivated Vaccine for Prevention and Control of Inclusion Body Hepatitis in Broiler Breeders

Authors
Sucheeva Junnu, Preeda Lertwatcharasarakul, Siriluk Jala, Sakuna Phattanakulanan, Angkasiya Monkong, Sittinee Kulprasertsri, Chotiga Thivalai, Warunya Chakritbudsabong, Kridsada Chaichoun, and Thaweesak Songserm

This article is available in The Thai Journal of Veterinary Medicine: https://digital.car.chula.ac.th/tjvm/vol45/iss1/16
An Inactivated Vaccine for Prevention and Control of Inclusion Body Hepatitis in Broiler Breeders

Sucheera Junnu, Preeda Lertwatcharasarakul, Siriluk Jala, Sakuna Phattanakulanan, Angkasiya Monkong, Sittinee Kulprasertsri, Chotiga Thivalai, Warunya Chakritbudsabong, Kridsada Chaichoun, Thaweesak Songserm

Abstract

Inclusion bodies hepatitis (IBH) in Thailand is caused by Fowl Adenovirus (FAdv) serotype 2. Vertical transmission is the important route for disease outbreak. Biosecurity and vaccination are the major keys for disease control and prevention. Vaccination of broiler breeders results in maternal antibody production that can be transferred to their progenies. Therefore, the aim of present study was to develop an inactivated FAdv serotype 2 vaccine. The FAdv was isolated from liver of infected chickens by inoculation onto chicken embryo liver cells (CEL). Virus purification was performed and then inactivated by Binary Ethylene Imine (BEI). The 10^7 TCID$_{50}$ of virus concentration was inactivated for chicken immunization. The 0.01M BEI at 37°C for 72 h was the optimal condition for FAdv inactivation. Infectivity test, virus isolation and PCR technique were used for complete virus inactivation. In addition, sterility test was performed before and after the inactivated FAdv was mixed with Montanide™ ISA 70 VG, an adjuvant. Specific pathogen free chickens were vaccinated once during rearing period by 0.5 ml/bird intramuscular injection. Results showed a significant antibody response ($p<0.05$). Moreover, the embryonic eggs and chicks from the vaccinated breeders showed disease protection at 90% and 100%, respectively, when challenged with 10^7 TCID$_{50}$ of FAdv serotype 2. These results suggested that the inactivated FAdv serotype 2 vaccine could be prepared locally for broiler breeder farms in Thailand.

Keywords: antibody response, broiler breeder, Fowl adenovirus, inactivated vaccine

1Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
2Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.
3Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900 Thailand (CASAF, NRU-KU, Thailand).
4Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
5Center of Veterinary Research and Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
6Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
7Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand.
8Department of Clinic and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand.
9Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand.
*Correspondence: fvettss@ku.ac.th
Introduction

Inclusion body hepatitis (IBH) was initially described in the 1960s in the United State (Helmbelt and Frazier, 1963) and was distributed widely throughout the world (McFerran and Adair, 2003). IBH is caused by group 1 Fowl adenovirus (FAdv) consisting of 12 serotypes (Benko et al., 2005). At present, in Thailand, IBH is caused by FAdv serotype 2 and has caused economic loss to the poultry industry (Songserm, 2007; Witoonsatian et al., 2008). Horizontal transmission is mainly oral-fecal route (McFerran and Smyth, 2000). In addition, vertical transmission is the important route and establishes latent infection (Helena et al., 2006). Infected breeder flocks spread the virus vertically during laying period resulting in low hatchability, poor chick quality, and high mortality in young broilers (Songserm, 2007). Therefore, an effective control should be initiated at broiler breeder farms to provide maternal antibody transcribing via egg yolk, in order to prevent the disease in offspring (McFerran and Adair, 2003; Grimes, 1977; Grimes, 2007). Several studies have reported the control of FAdv infection and revealed successful protection by immunization with either attenuated vaccines or inactivated vaccines. Complete protection of progenies by injecting broiler breeders twice with an autogenous killed vaccine was earlier reported (Alvarado et al., 2007). Dual or polyvalent vaccines applied in breeders were also described earlier (Toro et al., 2002; Fadly and Winterfield, 1975). Furthermore, many groups have succeeded in controlling the disease by applying inactivated homogenates that were prepared from the livers of infected birds clinically showing hydropericardium syndrome in Pakistan (Afzal and Ahmad 1990; Anjum, 1990; Roy et al., 1999). At present, most commercial vaccines are prepared by combinations of the FAdv-4 and other viruses which are the Newcastle virus (NDV) and the Chicken anemia virus (CAV) (Toro et al., 2002). Apart from the virus serotype in the commercial vaccines, FAdv serotype 2 was identified as the cause of IBH in Thailand. The purpose of the present study was to develop an inactivated FAdv vaccine to be experimentally injected into broiler breeders and evaluate the vaccine efficacy monitored by an indirect enzyme linked immuno-sorbent assay (ELISA) test which was developed based on recombinant Hexon protein as described earlier (Junnu et al., 2014).

Materials and Methods

Virus preparation

Virus propagation: The FAdv serotype 2 virus isolated in Thailand in 2007 (Songserm, 2007) was propagated in chick embryo liver (CEL) cell culture which was prepared as described earlier (Adair et al., 1979). Briefly, the CEL cells were prepared from 12- to 14-day-old chicken embryos. The cells were dispersed in 0.25% Trypsin (HyClone®, Thermo scientific, UT, USA), grown in growth media (GM): 1XMinimum Essential Medium (MEM) (GibcoTM, Invitrogen Corporation, CA, USA) with L-glutamine, 10% Fetal Bovine Serum (FBS) (HyClone®, Thermo scientific, UT, USA), 10% Tryptose Phosphate Broth (TPB) and Penicillin-Streptomycin (PS). Master seed of the virus at a titer of 10^7 mean Tissue Culture Infectious Dose (TCID50)/0.1 ml reconstituted from freeze-dried condition in phosphate buffered saline (PBS) was inoculated onto the CEL cells, incubated at 37°C for 1 hour, and then maintenance media (MM): (1XMEM with L-glutamine, 1% FBS, 10% TPB and PS) was added and further incubated at 37°C with 5% CO2. Cytopathic effect (CPE) was daily observed. CPE containing CEL cells were harvested by freeze-thaw method and centrifuged at 10,000 rpm for 30 min, at 4°C. The supernatant was filtered through syringe filters with porosity of 0.20 μm and stored at -80°C until used.

Plaque purification: The virus was prepared by 10-fold serial dilutions in GM and then 0.5 ml of each dilution was overlaid onto the CEL cells in duplicate dishes. One hour after overlaying on the CEL cells incubated at 37°C with 5% CO2, the remaining virus suspension was discarded. Four percent agarose gel was prepared in growth media and was melted in microwave (about 3 min for 100 ml). Twenty-five ml of 4% agarose gel was mixed with 225 ml GM and placed in 37°C water bath for 1 hour. Then, the combination of agarose and GM was gently poured onto the infected CEL cells. Later, the dishes were incubated at 37°C with 5% CO2. The plaques were found to be visible within 3 to 5 d. The plaques of suitable dilutions were harvested by using sterile pasture pipette and were collected in MM. The plaque purification was performed three times. For the second and third times, the purification was performed with 10-fold dilution of these plaques from 1:10 to 1:100. The plaques were picked up and mixed with the MM, and vortexed for dispersing the virus particle and for preparing the master virus seed.

Titration of FAd Virus: The FAdv infected CEL cells were titrated by means of TCID50 (Reed and Muench, 1938). Briefly, a 10-fold serial dilution of the virus was prepared in MM from 1:10 to 10^9. Monolayer of CEL cells was prepared in 96-well tissue culture microtitration plate (SPL®, SPL Life Sciences, Korea). One hundred microliters of each dilution of the virus were consecutively inoculated in 10 wells of the first row. The last 2 wells of the same row were served as the positive and negative control, respectively. The plate was incubated at 37°C with 5% CO2 for 5 d. The CPE was daily observed under an inverted microscope.

Vaccine preparation

Inactivation of FAd Virus: The FAdv infected CEL cells were inactivated using binary ethylene imine (BEI) following the method described earlier (Bahnemann, 1990). In short, 0.1 M BEI was prepared by dissolving 0.041 g of 2-bromo-ethylamine HBr (BEA) (Sigma, USA) in 2 ml of 0.175 N NaOH (Merck, Germany) and was incubated at 37°C for 60 min. The BEI was diluted 1:10 and 1:100 in FAdv supernatant to a final concentration of 0.01 and 0.001M, respectively. BEI treated FAdv supernatant solution of both concentrations was incubated at 37°C and were collected at 0, 6, 12, 24, 48 and 72 h. Then, the treated supernatants were tested for pH and virus infectivity. The BEI-FAdv supernatant treatment was stopped by using sterilized 1M sodium thiosulfate (Merck,
Germany) at the concentration of 10 times of the BEI final concentration (Sarachai et al., 2010). The inactivated virus was inoculated onto the fresh and confluent monolayer of CEL cells. Ten-serial passage was performed for the residual infectivity test of virus in vitro. Fifteen ml of the inactivated virus suspension were tested for total bacterial count contamination following conventional plate count method in Bacteriological Analysis Manual (Maturin and Peeler, 2001). Briefly, the sterility of vaccines was checked on bacteriological and fungal media which were synthetic media including standard plate count agar (SPA) and yeast extract glucose chloramphenicol agar (YGC), respectively.

Viruses isolation test: The inactivated FAdv were tested for virus infectivity by the inoculation onto the monolayer CEL cells. One hundred microliters of ten-fold dilution from 0.01 or 0.001 M BEI-FAdv supernatant solution at each time point were inoculated onto the monolayer CEL cells. The CPE of the inoculated CEL cells were daily observed for 5-7 d.

Immunoperoxidase monolayer assay: The FAdv inactivation was tested for virus infectivity by the inoculation of the inactivated FAdv onto monolayer CEL cells. Two hundred microliters of inactivated FAdv suspension from each time point were inoculated onto the monolayer CEL cells. The inoculated CEL cells were observed for a few or more CPE affected cells within 24 h. The infected cells were washed with 1xPBS for 3 times and air-dried completely in a safety cabinet. The infected CEL cells were then fixed with 4% paraformaldehyde at room temperature (RT) for 10 min. After the 4% paraformaldehyde was rinsed, the cells were washed with 1xPBS for 3 times and incubated with 0.5% saponin at RT for 10 min. Then, saponin was rinsed and the CEL cells were washed 3 times again. Mouse anti Hexon protein serum (Junnu et al., 2014) was diluted with 1xPBS at a ratio of 1:500 and then were added onto monolayer CEL cells and incubated at RT for 1 hour. The CEL cells were washed with 1xPBS for 3 times and incubated with goat anti-mouse IgG (H+L) (KPL, USA) which was diluted 1xPBS at 1:500 for 1 hour. Color was developed using 3, 3’-Diaminobenzidine (DAB) as a chromogen.

The sterile inactivated FAdv suspension was mixed with an adjuvant (Montanide® ISA 70 VG, SEPPIC Inc, France) at a ratio of 1:1 (v/v) and was slowly homogenized about 100 rounds per minute (rpm) at RT for 1 hour.

Animals

Chickens and housing: Specific pathogen free (SPF) white leghorn chickens and commercial broiler chickens (Arbor Acres) provided by Better Foods Company Ltd., Thailand were tested for antibody response to vaccine evaluation. They were raised in positive-pressure high-efficiency particulate air-filtered stainless steel isolation cabinets at a biosafety level 3 laboratory, Faculty of Veterinary Science, Mahidol University. All animal procedures performed in this study were reviewed, approved, and supervised by the Faculty of Veterinary Science-Animal Care and Use Committee of Kasetsart University and Mahidol University.

Study plans

Antibody response of vaccinated chickens: Twenty-four one-day-old SPF chickens which were free from avian viruses including AI, ND and FAdV, and of which antibody were negative to FAdV were divided into 4 groups (A, B, C and D), 6 birds each. Group A served as the control group and was intramuscularly injected with PBS or the culture media (maintenance media mixed with adjuvant). Group B, C and D were intramuscularly immunized with the inactivated FAdV vaccine initially prepared from three different virus concentrations including 10⁶, 10⁷, 10⁸ TCID₅₀, 0.5 ml per bird. Twelve days post vaccination, serum samples of the vaccinated chickens were collected once and antibody response was tested by an indirect ELISA, as previously described (Junnu et al., 2014). This ELISA kit has been carried out and routinely used to detect antibodies against Hexon protein of FAdV serotype 2 in our laboratory.

Protection study in progeny of vaccinated broiler breeders: In this study, forty one-day-old commercial chicks (group A) and forty embryonic eggs of seven days (group B) were obtained from vaccinated broiler breeders immunized at ten weeks of ages. Those chicks were randomly divided into 2 groups; negative control (NC) and challenged (C). In addition, chicks of a positive control (PC) group were obtained from free FAdv flock. Group NC served as the control group and was not inoculated with the virus, but was orally inoculated with PBS. Group C and PC, were orally inoculated with 10⁶ TCID₅₀ of FAdv serotype 2. For the embryonic eggs, they were divided and were virus inoculated similar to the chicks. However, those eggs were virus inoculated via allantoic route and were incubated until hatching. Both chicks from one-day-old and chicks from embryonic eggs were reared in different isolation units in a biosafety animal building. Feed and water were provided ad libitum. All birds were daily observed for clinical signs and mortality for three weeks after FAdV challenge.

Serological Tests: Serum samples of the vaccinated chickens were collected and stored in aliquot at -20°C until used.

Enzyme-linked immune-sorbent assay (ELISA): Detection of antibody against FAdV was performed by using an indirect ELISA as reported earlier (Junnu et al., 2014). Briefly, the recombinant Hexon protein diluted 1:200 was used. Chicken sera were 10-fold diluted. Horseradish peroxidase (HRP)-labeled goat anti-chicken IgG (KPL, Galthersburg MD, USA) was diluted 1:10,000. Results were determined by ELISA reader at a wave length of 650 nm.

Serum Neutralization (SN) test: The CEL cells were prepared for SN test. Chicken serum samples were performed using 2-fold dilution with medium from the first to twelfth wells. The 50 µl 100 TCID₅₀ of FAdV was loaded in each well and mixed well. The plates were incubated at 37°C with 5% CO₂ for 1 hour. Then, 100 µl
(2.5 x 10^5 cells/ml) of CEL cells were added to each well. The plates were further incubated for 5-7 d and observed every 24 h. Results were determined by inhibition of CPE in the wells.

Statistical Analysis: Values of the SN titer were transformed to log2 values. Mean comparison of parameters (S/P ratio and log2 SN titer) between the vaccinated and control groups were analyzed by one way ANOVA. Significance level (p-value) for all parameters was set at 0.05.

Results

Vaccine preparation: There was no total bacterial mold growth by the sterility test. Moreover, there was no CPE of FAdv infection in the CEL cells after the 5- to 7-day incubation by the infectivity test. These revealed that the virus suspension was completely inactivated and had no bacterial or mold contamination.

Antibody response of vaccinated chickens: The ELISA Hexon test kit and SN test were performed in duplicate on total serum samples. The mean group S/P ratio and mean log2 SN titers between the control and vaccinated groups had difference in viral concentration and are summarized in Table 1. Prior to vaccination, all pre-serum samples of the vaccinated SPF chickens were negative to antibody against FAdv by the SN test and ELISA. Twelve days post vaccination, all serum samples of the vaccinated chickens showed antibody titer in the SN test and ELISA. The chickens vaccinated with a 10^6 and 10^7 TCID50 had better anti-Hexon IgG response compared to those vaccinated with 10^5 TCID50 and the control chickens. The mean S/P ratio in the chickens of 10^6 and 10^7 TCID50 groups (0.396±0.08 and 0.216±0.06) were significantly higher than that of the control chickens (0.009±0.02) (p<0.05). However, the chickens vaccinated with 10^6 TCID50 (mean S/P ratios: 0.216±0.06) were not significantly different from those vaccinated with 10^5 TCID50 (mean S/P ratios: 0.088±0.04) (p>0.05). The log2 SN titers of the chickens of 10^6 and 10^7 TCID50 groups (log2 SN titers: 8.00±1.04 and 6.17±1.42) revealed significant difference from those of the chickens of 10^5 TCID50 and the control groups (p<0.05).

In the SPF chickens, the mean S/P ratios and mean log2 SN titers between the vaccinated and control groups of different sampling weeks are shown in Figs. 1 and 2, respectively. The chickens vaccinated with FAdv inactivated vaccine had better anti-Hexon IgG and neutralizing antibody response than the control chickens. The ELISA results showed the mean S/P ratios of the vaccinated chickens at 2-8 weeks post vaccination being significantly higher than those of the control chickens. However, the mean S/P ratios of the vaccinated chickens at 9-13 weeks post vaccination were not significantly different from those of the control chickens. The SN titers of the vaccinated chickens were higher than those of the control chickens at 3-13 weeks post vaccination (p<0.05).

Although the S/P ratio of the ELISA test decreased at six weeks post vaccination, the SN titer of all tested serum samples still remained at high levels.

Protection study in progeny of vaccinated broiler breeder: The mean body weights of the chickens in the trial groups after challenged are presented in Table 2. The chickens derived from challenged chicks and embryonic eggs had lower mean body weight than those of the control chickens. Together with reduced weight gain, the chickens of the challenged groups showed mild depression with reduced feed intake throughout the study.

To evaluate the protective efficacy of immunization against FAdv serotype 2 challenge, all vaccinated and positive control chickens were challenged with 10^7 TCID50/0.1 ml of FAdv, at one day old for the chicks and 7 d old for the embryonic eggs. For the results of protection efficiency as shown in Table 3, the challenged chicks did not find mortality, showing 100% protection, comparable to the challenged embryonic eggs, which revealed 90% protection. In addition, the death of the challenged embryos showed hemorrhagic, swollen and friable livers including pancreas hemorrhage.

Discussion

Fowl adenovirus has been identified as a causative agent of IBH and hydropericardium syndrome (HPS) in chickens and has become a major economic impact to poultry industry worldwide (Adair and Fitzgerald, 2008). At present, epidemiological studies indicate that FAdv cause economic loss in the global poultry population (Cheema et al., 1989; Singh et al., 1996; Ojkic et al., 2008; Nakamura et al., 2011; Steer and Noormohammadi, 2011; Zadravec et al., 2011; Choi et al., 2012). In Thailand, IBH is caused by FAdv serotype 2 (Songserm, 2007). Although a vaccine prepared from FAdv serotype 4 and combined with Newcastle disease virus clone 30 and Lasota strain is now available on the market, it is still questionable whether antibody raised by this vaccine can provide protection to the disease caused by the FAdv serotype 2 in Thailand.

Table 1

Mean group of antibody titers measured by ELISA Hexon test kit and SN test on different trial dosage (Group A: Control, Group B: 10^6 TCID50, Group C: 10^7 TCID50 and Group D: 10^8 TCID50)

<table>
<thead>
<tr>
<th>Group</th>
<th>ELISA Hexon test kit (Mean S/P ratio)</th>
<th>Mean antibody titer (log2 SN titer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.009±0.02*</td>
<td>0(^b)</td>
</tr>
<tr>
<td>B</td>
<td>0.396±0.08<</td>
<td>8.00±1.04(^b)</td>
</tr>
<tr>
<td>C</td>
<td>0.216±0.06<</td>
<td>6.17±1.42(^b)</td>
</tr>
<tr>
<td>D</td>
<td>0.088±0.04<</td>
<td>0(^b)</td>
</tr>
</tbody>
</table>

\(^a,b,c\) Mean antibody titers with different superscripts indicate statistical significance (p<0.05) between different vaccinated groups.
Our inactivated FAdv serotype 2 vaccine could induce antibody raised post vaccination, presented by the high level of both ELISA S/P ratio and SN titers. Additionally, it was efficient to protect the disease after challenge in the experimental chickens. Other groups conducting the studies by inactivating FAdv serotype 4 and vaccinating experimental chickens were successful in controlling the disease earlier (Sahidullah et al., 2008; Aslam et al., 2012). Our successful study is in accord with those previous studies in that the inactivated FAdv vaccine could be an efficient tool to control the FAdv infection.

The mean of ELISA antibody from SPF chickens could be detected twelve days post vaccination and declined at 5 weeks post vaccination. The results support the finding of some previous studies (Akhtar et al., 2000; Sahidullah et al., 2008; Kim et al., 2014) which revealed the increasing antibody level at one week and decreasing at four weeks post vaccination. The increasing antibody at 11-13 weeks post vaccination was detected by the ELISA test kit although the S/P ratios were less than the cut-off value (S/P ratio cut-off = 0.106). However, the SN titers were not changed at this period. This might indicate the high sensitivity and specificity of the test kit. Since all experimental chickens were raised in the biosecurity level 3 isolator, it was unlikely to be caused by the FAdv infection. On the other hand, there might be an error in serum collection, especially at week 10 post vaccination.

In this study, the maternal antibody of vaccinated broiler breeders transferred to the embryonic eggs could protect the embryos and one-day-old chicks after FAdv serotype 2 challenged, with 90% and 100%, respectively. The result of 90% protection in the challenged embryos may be questioned whether the protective level of maternal antibody transferred to the embryos was not uniformed at challenge. This may depend on the different rate of transferring of maternal antibody to the embryos. One hundred percent of the survived chickens after challenged indicated that the antibody-disease intervention was successful. However, the mean body weights of the challenged chickens were significantly lower than those of the control chickens ($p<0.05$) (Table 2). This feature may be caused by the intervention resulting in decreased feed intake. It is worthwhile to induce the specific antibody against FAdv in the breeders with inactivated vaccine because the inactivated vaccine does not lead to the viral shedding from the breeders to the environment. Apart from the inactivated vaccine, virus in live vaccines or homogeneous infected tissues do replicate in the GI tract and liver resulting in viral shedding to the environment although clinical signs are not present. Shedding of attenuate or live vaccine virus is commonly found in many vaccines (Meeusen et al., 2007). Furthermore, virus shedding from chickens fed infected homogenate or orally inoculated with live virus is at high risk of the problem. The virus can be mechanically transmitted by several vectors including flies, cockroaches, beetles and others.

To our best field experience, single or twice vaccination with inactivated vaccine has been successful in controlling the disease. The first vaccination should be done in the breeders at least 2 weeks before laying period. The protective maternal antibody will last longer than 45 weeks of egg production period (unpublished data). However, farm biosecurity is the most important control measure of this problem. Vaccination can be helpful to decrease the economic loss.

Even though infected parent stocks did not show any clinical signs, the virus could be vertically transmitted to their offspring, resulting in economic loss of chick production (Adair and Fitzgerald, 2008).

Several previous studies of vaccine development for IBH and HPS disease control and prevention either attenuated adaptation vaccine (14-16 passages) or inactivated vaccine which was treated with formalin and BEI. However, formalin affects virus protein membrane and reduces the antigenicity of an antigen. These effects can also cause disease in vaccinated chickens (Bahnemann, 1990). We have used

Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>One day old</th>
<th>1 week</th>
<th>2 weeks</th>
<th>3 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>46.25±0.67a</td>
<td>150±5.77c</td>
<td>292.94±8.60b</td>
<td>641.5±17.53b</td>
</tr>
<tr>
<td>A</td>
<td>45.50±0.89a</td>
<td>208.4±8.96b</td>
<td>406.22±7.47b</td>
<td>630.33±14.34b</td>
</tr>
<tr>
<td>C</td>
<td>44.05±0.79a</td>
<td>125±5.56b</td>
<td>224.87±4.23b</td>
<td>562.57±11.06a</td>
</tr>
<tr>
<td>NC</td>
<td>49.27±1.81a</td>
<td>226.11±1.89a</td>
<td>422.44±3.82b</td>
<td>742.85±41.56a</td>
</tr>
<tr>
<td>B</td>
<td>46.48±1.60a</td>
<td>124.25±4.49b</td>
<td>345.00±53.00ab</td>
<td>616±127.03ab</td>
</tr>
<tr>
<td>C</td>
<td>47.87±0.68a</td>
<td>154.03±5.39a</td>
<td>331.93±13.86a</td>
<td>583.89±15.57a</td>
</tr>
</tbody>
</table>

a Broiler chickens and embryonic eggs were challenged at one day old of age and 7 days, respectively. *a, b, c* Values with different superscripts within column vary significantly ($p<0.05$). A: one-day-old chicks, B: embryonic eggs, NC: negative control, PC: positive control, C: challenged

Table 3

<table>
<thead>
<tr>
<th>Group</th>
<th>Total number</th>
<th>Total mortality</th>
<th>% mortality</th>
<th>% protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chick of vaccinated broiler breeder</td>
<td>30</td>
<td>0/30</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Embryonic egg of vaccinated broiler breeder</td>
<td>30</td>
<td>3/30</td>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

a Broiler chickens and embryonic eggs were challenged at one day old of age and 7 days, respectively.
Figure 1 Mean group of sample-to-positive (S/P) ratios in serum from vaccinated group (n = 5) and control group (n = 5) on different weeks (at 0 to 13 weeks post vaccination). Error bars represent standard errors.

Figure 2 Mean group of log2 serum antibody titers measured by SN test between vaccinated group (n = 5) and control group (n = 5) on different weeks (at 0 to 13 weeks post vaccination). Error bars represent standard errors.

BEI for inactivating the FAdv because BEI is an alkylating substance which reacts very little with proteins. Therefore, the antigenic components of virus are not altered (Akhtar et al., 2000).

In conclusion, the inactivated FAdv serotype 2 vaccines could stimulate specific immunity against the FAdv serotype 2 in this study. Hence, humoral immunity induced by the inactivated FAdv serotype 2 vaccines could be a tool of IBH control in both breeders and their progenies.

Acknowledgements

This work was partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand, Center for Agricultural Biotechnology, Ramaphaeng Saen Campus, and Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Commission on Higher Education, Ministry of Education (AG-BIO/PERDOCHE). The authors would also like to thank Center of Veterinary Research and Service, Faculty of Veterinary Medicine, Kasetsart University, and Betagro Science Center Laboratory.

References

Grimes TM and King DJ 1977. Effect of maternal antibody on

Kim MS, Lim TH, Lee DH, Youn HN, Yuk SS, Kim BY, Choi SW, Jung CH and Han JH 2014. An inactivated oil-emulsion fowl adenovirus serotype 4 vaccine provides broad cross-protection against various serotypes of fowl adenovirus. Vaccine. 32: 3564-3568.

บทคัดย่อ

การพัฒนาวัคซีนเชื้อตายสำหรับป้องกันและควบคุมโรคอินคลูชั่น บอดี เฮปาไตติสในประเทศไทย

สุชีว้า จันทร์หนู1,2,3, ปรีดา เลิศวัชระสารกุล4, สิริลักษณ์ จาละ5, สกุณา พัฒนกุลอนันต์5, อังคษิญาร์ มั่นคง5, สิทธิณี กุลประเสริฐศรี6, โชติกา ทิวาลัย7, วรัญญา ชาคริตบุษบง8, กฤษฎา ใจชื้น9, ทวีศักดิ์ ส่งเสริม4*

เชื้อฟาว์ล อะดีโนไวรัส ซีโรไทป์ 2 จัดเป็นหนึ่งในเชื้อที่ทำให้เกิดโรคอินคลูชั่น บอดี เฮปไตติส (ไอ บี เอช) ที่มีการแพร่ระบาดในประเทศไทย การถ่ายทอดเชื้อจากแม่สู่ลูกถือว่าเป็นการแพร่กระจายซ้ำในสัตว์ ในการควบคุมและป้องกันโรคจึงมีการจัดระบบความปลอดภัยทางชีวภาพที่เข้มงวดของฟาร์มและให้วัคซีนเพื่อให้พ่อแม่พันธุ์ไก่เนื้อถ่ายทอดภูมิคุ้มกันไปสู่ลูกไก่ได้ ดังนั้นวัตถุประสงค์ในการศึกษาครั้งนี้ คือการพัฒนาวัคซีนเชื้อตายจากเชื้อฟาว์ล อะดีโนไวรัส ซีโรไทป์ 2 ซึ่งผลิตจากไวรัสที่ได้จากตับไก่ที่ติดเชื้อและนำมาเพิ่มจำนวนไวรัสจากเซลล์ chicken embryo liver (CEL) จากนั้นนำไวรัสที่มีความเข้มข้น 10⁷ TCID₅₀ มาทำให้หมดฤทธิ์ด้วย binary ethylene imine (BEI) ที่ความเข้มข้น 0.01 มิลลิลิตร ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 72 ชั่วโมง เมื่อนำมาทดสอบความสามารถในการติดเชื้อ ทดสอบหัวสัตว์พันธุ์ ชนิด ชนิด และวิธีการทดสอบพบว่าการใช้วัคซีนที่ได้จากการวัดหรือวิเคราะห์ไม่ได้มีผลต่อการรับรู้หรือวิเคราะห์อย่างมีนัยสำคัญทางสถิติ (p>0.05) สำหรับประสิทธิภาพในการป้องกันโรคของวัคซีน พบว่า ตัวอ่อนในไข่ไก่ฟักและลูกไก่จากพ่อแม่พันธุ์ที่ได้วัคซีนแล้วไม่ได้เชื้อทั้งหมดสามารถป้องกันโรคได้ร้อยละ 90 และร้อยละ 100 ตามลำดับ ดังนั้นการพัฒนาและทดสอบวัคซีนเชื้อตายสำหรับป้องกันโรคไอ บี เอช นี้สามารถทำล่าช้าการแพร่และผลิตสำหรับใช้ในฟาร์มไก่พ่อแม่พันธุ์ภายในประเทศไทยต่อไป

คำสำคัญ: การตอบสนองทางภูมิคุ้มกัน พ่อแม่พันธุ์ไก่เนื้อ ฟาว์ล อะดีโนไวรัส วัคซีนเชื้อตาย

*ผู้รับผิดชอบบทความ E-mail: fvettss@ku.ac.th