ANTIPROLIFERATIVE EFFECT OF LICORICE EXTRACT ON PROLIFERATION OF KELOID FIBROBLASTS

Tanwarat Kaisongkram
Kwanchai Rattanamani
Saranya Laovitthayanggoon
Vilailux Chennangchee
Pongsatom Limstriwong

See next page for additional authors

Follow this and additional works at: https://digital.car.chula.ac.th/tjps

Part of the Pharmacology Commons

Recommended Citation
Kaisongkram, Tanwarat; Rattanamani, Kwanchai; Laovitthayanggoon, Saranya; Chennangchee, Vilailux; Limstriwong, Pongsatom; and Bangchonglikitkul, Chuleeratana (2012) "ANTIPROLIFERATIVE EFFECT OF LICORICE EXTRACT ON PROLIFERATION OF KELOID FIBROBLASTS," The Thai Journal of Pharmaceutical Sciences: Vol. 36: Iss. 0, Article 20.
Available at: https://digital.car.chula.ac.th/tjps/vol36/iss0/20

This Article is brought to you for free and open access by the Chulalongkorn Journal Online (CUJO) at Chula Digital Collections. It has been accepted for inclusion in The Thai Journal of Pharmaceutical Sciences by an authorized editor of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
ANTIPROLIFERATIVE EFFECT OF LICORICE EXTRACT ON PROLIFERATION OF KELOID FIBROBLASTS

Authors
Tanwarat Kaisongkram, Kwanchai Rattanamani, Saranya Laovitthayanggoon, Vilailux Chennangchee, Pongsatom Limsiiriwong, and Chuleeratana Bangchonglikkul

This article is available in The Thai Journal of Pharmaceutical Sciences: https://digital.car.chula.ac.th/tjps/vol36/iss0/20
ANTIPROLIFERATIVE EFFECT OF LICORICE EXTRACT ON PROLIFERATION OF KELOID FIBROBLASTS

Tanwarat Kaisongkram1*, Kwanchai Rattanamani2, Saranya Laovithayanggoon1, Vilailux Chennangchee1, Pongsatom Limsiriwong1, and Chuleeratana Bangchonglikitkul1

1Pharmaceutical and Natural Products Department, Thailand Institute of Scientific and Technological Research (TISTR), 35 Moo 3, Technopolis, Leab Klong 5 Road, Klong Luang, Pathum Thani 12120, Thailand
2Faculty of Pharmaceutical Science, Naresuan University, Phitsanulok 65000, Thailand
*Corresponding author, email: tanwarat@tistr.or.th

Keywords: keloid fibroblast, TGF-β, IL-6, licorice

INTRODUCTION
Keloid formation is resulted from wound healing process and influenced by various factors such as age, gender, heredity, and ethnicity. Wound healing, as a normal biological process in the human body, is accomplished through different phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal effectively, all four phases must occur in the right sequence. Different factors may interfere with one or more phases of this process. Scars are areas of fibrous tissue that replace normal skin (or other tissue) after injury. A scar results from the biological process of wound repair in the skin and other tissues of the body and constitutes a natural part of the healing process. Scarring is considered abnormal when the amount of fibrosis is excessive or suboptimal, as in hypertrophic, atrophic, or keloidal scars; when it affects normal function; and when it is symptomatic. (Nurul Syazana et al, 2001)

The present study was to determine the antiproliferative effect of Licorice (glycyrrhiza glabra) extract on keloid fibroblasts and the inhibitory activity of Licorice extract on TGF-β and IL-6 production that played an important role in keloid pathogenesis.

MATERIALS AND METHODS

Plant material and preparation of plant extracts
Licorice roots were purchased from the local Thai market and after that they were cleaned, dried in the hot air oven, and grounded to be a coarse powder. The powder was extracted with ethanol. The ethanolic extract was filtered and concentrated under reduced pressure. After that the ethanolic extract was dissolved in water and partitioned into four fractions by various solvents as follow: hexane, dichloromethane, n-butanol, and ethyl acetate. The ethanolic extract was tested on the proliferation of keloid fibroblast and the production of TGF-β. Then the ethanolic extract and various fractions were studied on IL-6 secretion.

Antiproliferative effect of ethanolic Licorice extract on keloid fibroblasts
Keloid fibroblasts were seeded in a 96-well plate at a density of 7.5x10^4 cells/ml in Dulbecco’s modified Eagle’s medium (DMEM) containing 5% fetal bovine serum and incubated in a humidified atmosphere of 95% air and 5% CO2 for 3 days at 37°C. After confluence, cells were incubated in fresh Dulbecco’s modified Eagle’s medium containing lipopoly saccharide and interferon-γ under the same conditions for 12 h. Licorice extract at a concentration of 1x10^−4 g/ml was added to cells and then incubated for 48 h. Cell proliferation was determined by MTT assay.

Determination of inhibitory activity of ethanolic Licorice extract on TGF-β
Keloid fibroblasts were grown in a 96-well plate at a concentration of 1x10^5 cells/ml in Dulbecco’s modified Eagle’s medium (DMEM) containing 5% fetal bovine serum and incubated in a humidified atmosphere of 5% CO2 for 3 days at 37°C until confluence. Cells were then incubated in fresh Dulbecco’s modified Eagle’s medium containing interferon-γ under the same conditions for 48 h. A 1x10^−2 g/ml Licorice extract was added to cells and incubated for 24 h. Cells were then washed and supernatant were obtained for analysis using an ELISA kit.

Determination of inhibitory activity of ethanolic Licorice extract and various fractions on IL-6
Murine macrophage cell line RAW264.7 (American Type Culture Collection) were cultured in a 96-well plate at a concentration of 1×10^5 cells/ml in Dulbecco's modified Eagle's medium (DMEM) containing 5% fetal bovine serum and incubated in a humidified atmosphere of 5% CO$_2$ for 3 days at 37°C until confluence. The medium was subsequently removed and each well was washed with DMEM without fetal calf serum. The cells were pre-incubated with ethanol, hexane, dichloromethane, butanol and ethyl acetate extracts and stimulated by lipopolysaccharide (100 ng/ml). Then they were incubated for 12, 24, 48 h at 37°C in an atmosphere of 5% CO$_2$. After incubation, the supernatants were removed and kept in -70°C until cytokines analysis. The IL-6 levels were quantified by ELISA kit according to the manufacture’s protocols.

RESULTS AND DISCUSSION

Antiproliferative effect of ethanolic Licorice extract on keloid fibroblasts

Table 1. Antiproliferative effect of Licorice extract on keloid fibroblasts at the concentration of 1×10^{-4} g/ml

<table>
<thead>
<tr>
<th>Sample</th>
<th>concentration (g/mL)</th>
<th>%Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licorice extract</td>
<td>1×10^{-4}</td>
<td>45.4</td>
</tr>
</tbody>
</table>

Table 1 shows the antiproliferative effect of Licorice extract on keloid fibroblasts compared with the control cell without sample test. After incubation for 48 h, sample was determined by MTT assay. Licorice extract inhibited fibroblast proliferation for 45.4% at the concentrations of 1×10^{-4} g/mL.

Determination of inhibitory activity of ethanolic Licorice extract on TGF-β

Table 2. Inhibitory activity on TGF-β production of Licorice extract, at the concentration of 1×10^{-4} g/ml

<table>
<thead>
<tr>
<th>Sample test</th>
<th>concentration (g/mL)</th>
<th>TGF-beta (pg/mL)</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>-</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>Licorice extract</td>
<td>1×10^{-4}</td>
<td>52.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 2 exhibits the study of Licorice extract on the inhibition of TGF-β secretion. Sample was tested in comparison to negative control without sample test. After incubation for 24 h, sample was determined by using an ELISA kit. The inhibitory activity of this extract on TGF-β production is found to be 2.6% at the same concentration.

Determination of inhibitory activity of ethanolic Licorice extract and various fractions on IL-6

Table 3 Inhibitory activity on IL-6 production of ethanolic extract and various fractions, at the concentration of 1×10^{-4} g/ml

<table>
<thead>
<tr>
<th>Sample test</th>
<th>concentration (g/mL)</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanolic extract</td>
<td>1×10^{-4}</td>
<td>62.9</td>
</tr>
<tr>
<td>Hexane extract</td>
<td>1×10^{-4}</td>
<td>-71.4</td>
</tr>
<tr>
<td>Butanol extract</td>
<td>1×10^{-4}</td>
<td>-62.6</td>
</tr>
<tr>
<td>Dichloromethane extract</td>
<td>1×10^{-4}</td>
<td>-21.8</td>
</tr>
<tr>
<td>Ethyl acetate extract</td>
<td>1×10^{-4}</td>
<td>-86.2</td>
</tr>
</tbody>
</table>
The inhibitory activity of Licorice extract on IL-6 production, as presented in Table 3, is found to be 62.9% at the concentration of 1×10^{-4} g/mL. From this result, the ethanolic extract is likely to have antiproliferative effect on keloid fibroblast by reducing the secretion of IL-6. To determine the active fraction and confirm the activity, the ethanolic extract was successively partitioned by hexane, dichloromethane, ethyl acetate and n-butanol. The result showed that the ethyl acetate extract is found to be most inhibitory activity for 89.2% whereas dichloromethane extract has low activity and the hexane and butanol extracts is found to be no activity.

CONCLUSION
In this in vivo study, the ethanolic Licorice extract possessed the antiproliferative effect on keloid fibroblasts by reducing the level of IL-6. This inhibition activity of the extract was found to be present in ethyl acetate fraction of this plant. Detailed mechanisms and cytotoxic profile are needed to be further investigated. Our data suggest that Licorice is potent herb for further research on the prevention of keloid scars.

REFERENCES