AN IMMUNOHISTOCHEMICAL STUDY OF THE PROGESTERONE RECEPTOR (PR) EXPRESSION IN PYOMETRA CASES AND NORMAL UTERI AT THE TIME OF DIOESTRUS IN THE BITCH

Kongkiat Srisuwatanasagul
Sayamon Sukjumlong
Sudson Sirivaidyapong
Sinchai Pianchop

Follow this and additional works at: https://digital.car.chula.ac.th/tjvm

Part of the Veterinary Medicine Commons

Recommended Citation
Srisuwatanasagul, Kongkiat; Sukjumlong, Sayamon; Sirivaidyapong, Sudson; and Pianchop, Sinchai (2005) "AN IMMUNOHISTOCHEMICAL STUDY OF THE PROGESTERONE RECEPTOR (PR) EXPRESSION IN PYOMETRA CASES AND NORMAL UTERI AT THE TIME OF DIOESTRUS IN THE BITCH," The Thai Journal of Veterinary Medicine: Vol. 35: Iss. 2, Article 6.
DOI: https://doi.org/10.56808/2985-1130.2005
Available at: https://digital.car.chula.ac.th/tjvm/vol35/iss2/6

This Short Communication is brought to you for free and open access by the Chulalongkorn Journal Online (CUJO) at Chula Digital Collections. It has been accepted for inclusion in The Thai Journal of Veterinary Medicine by an authorized editor of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
AN IMMUNOHISTOCHEMICAL STUDY OF THE PROGESTERONE RECEPTOR (PR) EXPRESSION IN PYOMETRA CASES AND NORMAL UTERI AT THE TIME OF DIOESTRUS IN THE BITCH

Kongkiat Srisuwatanasagul1* Sayamon Sukjumlong1
Sudson Sirivaidyapong2 Sinchai Pianchop1

Abstract

The aims of the present study were to investigate the expression of the progesterone receptor (PR) and to compare whether there was any difference between pyometra cases and normal bitch uteri, during dioestrus, by means of immunohistochemistry. The uterine samples were collected from bitches which clients had submitted for spaying and for pyometra treatment. The results showed that a difference was obvious in the connective tissue stroma and myometrium in which a higher expression of PR was observed in the pyometra group. It may be postulated that the difference in PR expression in these uterine compartments may be involved in the pathogenesis of pyometra, which commonly occurs during dioestrus.

Keywords: progesterone receptor, pyometra, immunohistochemistry

1 Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330
2 Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330
* Corresponding author
Introduction

Pyometra is a pus-filled, infected uterus and the typical time for it to occur is at dioestrus (Noakes et al., 2001; Schoon et al., 1992). Common signs of pyometra are vaginal discharge, polyuria, polydipsia, gastrointestinal signs such as vomiting, and depression. Though the pathogenesis of pyometra was not fully understood, it is assumed to be mainly caused by hormonal disturbances such as stimulation by exogenous progesterone (Nelson and Feldman, 1986; Noakes et al., 2001). Moreover, there is a report that the treatment of pyometra with an antiprogestin may lead to clinical recovery (Trasch et al., 2003; Zaragoza et al., 2004). On the other hand, earlier studies reported that there is no evidence of high or prolonged increased plasma levels of progesterone, in bitches with pyometra (Chaffaux and Thibier, 1978; Hadley, 1975; Noakes et al., 2001). It may be that the pathogenesis of pyometra is mediated by changes in the expression progesterone receptors rather than an increase of plasma progesterone levels.

The effects of ovarian, steroid hormones are regulated by their receptor proteins in specific target tissues. The investigation of progesterone receptors may lead to a better understanding of the mechanism of pathological change that occur in the uterus causing pyometra. The aims of the present study were to investigate the expression of progesterone receptors, in different uterine compartments of bitches with pyometra and to compare them with those in normal bitch uteri.

Material and Methods

2.1 Tissue samples

The uterine samples were obtained following ovariohysterectomy, from bitches of many breeds and age. In the pyometra group, the purpose of spaying was because of clinical signs, indicative of pyometra i.e. purulent vaginal discharge, depression, abdominal distention etc. The studies were done on 3 groups: group A, pyometra group (n=6); group B, control group in...
dioestrus (n=6) and group C, control group in anoestrus (n=6). In group A, only samples collected from bitches which showed pus in the uterine lumen were included in the experiment. In all groups, the stages of the oestrous cycle were determined by vaginal cytology, as previously described in the earlier studies (Chu et al., 2001; Holst and Phemister, 1975) as well as by macroscopic and microscopic examination of the uterus (Galabova et al., 2003).

2.2 Histological examination
Uterine samples were collected from the mesometrial site near the centre of the uterine horns. They were fixed in 4% paraformaldehyde for 48-60 h and thereafter processed for histological examination: embedded in paraffin, sectioned 4 µm thick and stained with hematoxylin-eosin (H&E) or kept until immunohistochemistry was performed.

2.3 Immunohistochemical staining
The uterine samples used for immunohistochemistry were mounted on 3-aminopropyl-triethoxysilane-coated slides. The sections were deparaffinized and pretreated in 0.01M citric acid buffer, pH 6.0 in a microwave (700 watt, Imarflex, MO-7528V) in order to increase the immunohistochemical reaction. Thereafter, they were rinsed in PBS and incubated in 3% hydrogen peroxide in methanol to block endogenous peroxidase, for 10 min., at room temperature (RT). After this step, all incubations were done in a humidified chamber at RT. After blocking endogenous peroxidase, the sections were rinsed and incubated with normal horse serum for 30 min., at RT. The immunohistochemical detection of PR was performed using mouse monoclonal antibody to PR (1:200, clone 10A9, Immunotech, Hamburg, Germany) added to the sections for 3 h at RT. The negative controls omitted primary antibody in the samples. After primary antibody incubation, all sections were rinsed with PBS in between each step of the staining procedure. The sections were incubated with biotinylated secondary antibody and avidin biotin complex (Vectastain Elite ABC kit, Vector Laboratories, Burlingame, CA, USA) for 30 min. at RT, respectively. Finally to visualise the immunological reaction, 3,3’-diaminobenzidine (DAB kit, Vector Laboratories, Inc., Burlingame, CA, USA) was added for 5 min and all the sections were counterstained with hematoxylin in order to distinguish negative reactions from positive ones. All the sections were investigated under a light microscope. Negative controls were done by omitting the primary antibody and normal bitch uteri in oestrus were used as positive controls.

2.4 Evaluation of the results
All the immunostaining evaluation was done under a light microscope at x400. As most of the cells in each compartment (surface epithelium, glandular epithelium, connective tissue and myometrium) were uniformly distributed, only evaluation on staining intensity was done. The results of staining intensity were evaluated semiquantitatively and classified as negative (-), weak (+), moderate (++) and strong staining (+++) (Sukjumlong et al., 2003).

Results and discussion
The results are shown in Table 1 under the specific uterine compartments, which were, surface epithelium, glandular epithelium, connective tissue and myometrium. Positive cells, with brown staining in the nuclei and no cytoplasmic staining, were observed in any of the samples examined. Cells of the vessels such as endothelial cells were all negative, and they were not evaluated. In the negative controls (Fig D), no specific staining was found in any uterine cells, while most of the cells stained positively for the positive controls (Fig E).

The results showed that the monoclonal antibody used in the study (PR clone 10A9) was able to stain progesterone receptors in the paraformaldehyde fixed, paraffin embedded uterine tissues from the bitches. It was reported in earlier studies that pyometra is frequently found at dioestrus (Noakes et al., 2001; Schoon et al., 1992). Moreover, pyometra can be induced experimentally by the inoculation of Escherichia coli suspension (De Bosschere et al., 2002a; Nomura and Funahashi, 1999). Therefore,
Immunohistochemical staining of progesterone receptors in the bitch uterus:

A, pyometra group; B, control group at dioestrus; C, control group at anoestrus; D, negative control and E, positive control

SE: surface epithelium, STR: stroma and GE: glandular epithelium. The arrow in figure 1A shows a strong positive cell in the stroma and the bar in figure A represents a distance of 20 µm
in the present study normal uterine samples at dioestrus were used so as to compare them with pyometra samples.

In group A (pyometra group), prominent staining was found in the connective tissue, while the staining intensity in the epithelia (both surface and glandular epithelia) was weak or negative. The staining intensity in the myometrium was moderate (Fig A). In group B (controls in dioestrus), most of the epithelial cells (surface and glandular epithelia) were negative with a few cells showing weak intensity in the surface epithelium. Most of the cells in the connective tissue compartments were weakly stained (Fig B). In group C (controls in anoestrus), the staining intensity was stronger in the surface epithelium than in the other compartments (Fig C).

Earlier studies in bitches have reported that progesterone receptors (PR) varied during the different stages of the oestrous cycle and also in different uterine cells (Dhaliwal, et al., 1997). The present study confirmed that variation was observed, not only between groups but also between different tissue compartments. However, in a study by Dhaliwal et al. (1997), some positive staining in the glandular epithelium during dioestrus was observed, whereas no positive staining could be found in the glandular epithelium in the present study during dioestrus. The discrepancy between these two studies could be because the study by Dhaliwal et al. (1997) was done on frozen tissues, while this present study was done on paraffin embedded tissues, where immunoreactivity may be lower than in to frozen tissues.

In the pyometra group, staining intensity was found to be prominently strong in the connective tissue and only moderate in the myometrium, while negative or weak staining was observed in the other compartments i.e. the epithelia. In the control group at dioestrus (group B), positive staining was negligible in most uterine compartments except in the connective tissue stroma, in which weak staining was observed. These results showed the difference in the expression of PR between normal uteri and pyometra, at dioestrus, with stronger staining observed in the connective tissue and myometrium of the pyometra group.

There is an earlier study suggesting that stromal cells can mediate some of the effects of steroid hormones on epithelial cells e.g. epithelial proliferation (Vermeirsch et al., 2000). In the present study, it appeared that PR in stromal cells remained positive in all the groups examined compared to the PR in the epithelia, therefore, some of the regulatory mechanisms in the epithelia may be mediated by the PR in the stroma as PR was absent from the epithelia. These mechanisms may also be involved in the development of pyometra, in which proliferation might be strongly induced, as a higher expression of PR was found in the stroma compared to the epithelia in pyometra group.

When comparing the results of the present study with earlier studies by De Bosschere (2003), in which pyometra was induced by the intraluminal inoculation, of a ligated uterine horn, with an Escherichia coli suspension, a similar pattern was observed with a higher expression of PR in most uterine compartments in the pyometra group. This indicated a similar mechanism regarding PR expression in both experimental pyometra in the earlier study and natural pyometra in the present study. It would seem that the pathogenesis of natural pyometra may involve an interaction between bacteria and hormones, as was shown in the experimental pyometra (De Bosschere et al., 2003).

In the control groups, differences could be observed with a lower presence of PR at dioestrus compared with anoestrus. A downregulation of PR in epithelia by progesterone was reported in earlier studies i.e. it was shown that progesterone treatment can reduce the number of progesterone receptors in uterine cell cultures (Galabova-Kovacs et al., 2004) and also in reproductive tissues (De Bosschere et al., 2002; Dhaliwal et al., 1999). Therefore, the low expression of PR at dioestrus in the present study may be the result of an expected higher level of progesterone at that period of the cycle as is shown in other studies (Dhaliwal et al., 1999a; Galabova-Kovacs et al., 2004). In the present study, this downregulation
mechanism was absent in the pyometra group, as a high expression of PR was found in the stroma and myometrium during dioestrus. The loss of a down regulation mechanism on PR by progesterone may cause the onset of a pathological state leading to pyometra in the bitch uterus.

At anoestrus, prominent staining was found in the surface epithelium, even though the levels of steroid hormones; oestrogen and progesterone, were supposed to be low, as was shown in an earlier study (Chu et al., 2002). This indicated that the level of plasma steroid hormones may not be the only regulator for the expression of PR. Instead, some other factors such as the stage of the oestrous cycle, the physiology of different uterine compartments (Galabova-Kovacs et al., 2004) and the pathological status of the bitch uterus, could also be involved.

When comparing the tissue compartments, different staining patterns was observed in the two types of epithelia (surface and glandular epithelia), in the control group at anoestrus (group C), and it could be suggested that the surface epithelium and the glandular epithelium response differently, at the same stage of the oestrous cycle and that these two have different functions or roles in the reproductive physiology of the bitch uterus.

In conclusion, the differences in PR expression found between the pyometra and the control groups, indicate that the different immunostaining patterns of PR in the stroma and myometrium, may at least, be involved in the pathogenesis of pyometra of bitches during dioestrus. Moreover, it is speculated that the expected down-regulation mechanism by progesterone at dioestrus, in these compartments, was lost in the pyometra group. Further information such as the presence of PR, as well as the levels of steroid hormones, at different stages of the oestrous cycle are needed to confirm this finding.

Table 1. The Staining intensity of progesterone receptors in the bitch uteri with pyometra and in control groups.

<table>
<thead>
<tr>
<th>Uterine compartments</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface epithelium</td>
<td>-</td>
<td>-/+</td>
<td>+++</td>
</tr>
<tr>
<td>Glandular epithelium</td>
<td>-/+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Connective tissue</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Myometrium</td>
<td>++</td>
<td>-</td>
<td>-/+</td>
</tr>
</tbody>
</table>

- negative; + weak, ++ moderate, +++ strong, +/- negative to weak staining

Group A : Pyometra group in dioestrus
Group B : Control group in dioestrus
Group C : Control group in anoestrus
Acknowledgement

This study was supported by The Veterinary Research Fund of the Faculty of Veterinary Science, Chulalongkorn University. The authors would like to thank Dr. Sukanya Maneein for helping to collect samples collections and Mrs. Jantima Intarapanya for her technical support on immunohistochemistry.

References

