Cocrystallization of Artemisinin and Amodiaquine Hydrochloride

Wiriyaporn Sirikun
Jittima Chatchawalsaisin
Narueporn Sutanthavibul

Follow this and additional works at: https://digital.car.chula.ac.th/tjps

Part of the Pharmacology Commons

Recommended Citation
Available at: https://digital.car.chula.ac.th/tjps/vol39/iss4/2
Cocrystallization of Artemisinin and Amodiaquine Hydrochloride

Wiriyaporn Sirikun¹, Jittima Chatchawalsaisin¹,², Narueporn Sutanthavibul¹,²*

¹Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
²Chulalongkorn University Drug and Health Products Innovation Promotion Center (CU.D.HIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand

Abstract

Artemisinin (ART) and amodiaquine dihydrochloride dihydrate (AQD) was selected as model host and guest molecules in the study. Cocrystallization of ART and AQD at mole ratio of 1:1 by temperature change technique using ethanol resulted in new solid state structure (Rec-ART-AQD (1:1)). The cocrystallized structure exhibited different XRPD pattern from ART, AQD and amodiaquine dihydrochloride monohydrate (AQM). In addition, FT-IR spectogram of Rec-ART-AQD (1:1) showed shift in wavenumber from 3440 cm⁻¹ to a lower region. This shift was due to the hydrogen bonding of –NH functional group on AQM interacting with C=O of ART. Thermal analysis of Rec-ART-AQD (1:1) also showed lower average endothermic dehydration energy and started at slightly lower temperature than AQM which was in good agreement with TGA results. Rec-ART-AQD (1:1) was analyzed for each component by HPLC. Analytical result showed that Rec-ART-AQD (1:1) contained 3.50% w/w of ART signifying ART: AQM mole ratio of 1:16 in the cocrystals. Solubility of ART in Rec-ART-AQD (1:1) at 30 °C is 79.87 µg/mL which was 33.41 % higher than ART solubility (59.87 µg/mL). Rec-ART-AQD (1:1) was found to have good stability with negligible water vapor uptake under various humidity generated by dynamic vapor sorption (DVS) study. Rec-ART-AQD (1:1) showed slight increase in antimalarial activity against P. falciparum compared to AQD and AQM. From the above supporting results, crystals obtained by recrystallization of ART together with AQD were cocrystals with uniform distribution of individual ART molecules in the major crystalline lattice of AQM at a mole ratio of 1:16.

Keywords: Cocrystallization, artemisinin, amodiaquine dihydrochloride monohydrate, solid state characterization, physicochemical characterization

Introduction

Cocrystals are newly defined solid morphology which becomes increasingly promising for drug development especially improving drug solubility and high potential on intellectual property rights [1-4]. Cocrystals are defined as the formation of a crystalline state between molecular or ionic active pharmaceutical ingredients (API) and cocrystal former that is normally solid under ambient condition [5]. Cocrystals are dramatically different from salts [6-8]. Cocrystals are formed via H-bond formation, while salts are formed by ionic interaction [9]. Particularly useful are carboxylic acid functional groups which commonly form H-bonds with other molecules to produce cocrystals. Other functional groups which are of interested are amine and...
Acknowledgments.

Compliance with ethical standards

Conflict of interest

References

Appendices

Table 1

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

Figure 55

Figure 56

Figure 57

Figure 58

Figure 59

Figure 60

Figure 61

Figure 62

Figure 63

Figure 64

Figure 65

Figure 66

Figure 67

Figure 68

Figure 69

Figure 70

Figure 71

Figure 72

Figure 73

Figure 74

Figure 75

Figure 76

Figure 77

Figure 78

Figure 79

Figure 80

Figure 81

Figure 82

Figure 83

Figure 84

Figure 85

Figure 86

Figure 87

Figure 88

Figure 89

Figure 90

Figure 91

Figure 92

Figure 93

Figure 94

Figure 95

Figure 96

Figure 97

Figure 98

Figure 99

Figure 100

Figure 101

Figure 102

Figure 103

Figure 104

Figure 105

Figure 106

Figure 107

Figure 108

Figure 109

Figure 110

Figure 111

Figure 112

Figure 113

Figure 114

Figure 115

Figure 116

Figure 117

Figure 118

Figure 119

Figure 120

Figure 121

Figure 122

Figure 123

Figure 124

Figure 125

Figure 126

Figure 127

Figure 128

Figure 129

Figure 130

Figure 131

Figure 132

Figure 133

Figure 134

Figure 135

Figure 136

Figure 137

Figure 138

Figure 139

Figure 140

Figure 141

Figure 142

Figure 143

Figure 144

Figure 145

Figure 146

Figure 147

Figure 148

Figure 149

Figure 150

Figure 151

Figure 152

Figure 153

Figure 154

Figure 155

Figure 156

Figure 157

Figure 158

Figure 159

Figure 160

Figure 161

Figure 162

Figure 163

Figure 164

Figure 165

Figure 166

Figure 167

Figure 168

Figure 169

Figure 170

Figure 171

Figure 172

Figure 173

Figure 174

Figure 175

Figure 176

Figure 177

Figure 178

Figure 179

Figure 180

Figure 181

Figure 182

Figure 183

Figure 184

Figure 185

Figure 186

Figure 187

Figure 188

Figure 189

Figure 190

Figure 191

Figure 192

Figure 193

Figure 194

Figure 195

Figure 196

Figure 197

Figure 198

Figure 199

Figure 200

Figure 201

Figure 202

Figure 203

Figure 204

Figure 205

Figure 206

Figure 207

Figure 208

Figure 209

Figure 210

Figure 211

Figure 212

Figure 213

Figure 214

Figure 215

Figure 216

Figure 217

Figure 218

Figure 219

Figure 220

Figure 221

Figure 222

Figure 223

Figure 224

Figure 225

Figure 226

Figure 227

Figure 228

Figure 229

Figure 230

Figure 231

Figure 232

Figure 233

Figure 234

Figure 235

Figure 236

Figure 237

Figure 238

Figure 239

Figure 240

Figure 241

Figure 242

Figure 243

Figure 244

Figure 245

Figure 246

Figure 247

Figure 248

Figure 249

Figure 250

Figure 251

Figure 252

Figure 253

Figure 254

Figure 255

Figure 256
Differential scanning calorimetry (DSC)

Thermal behaviors of the samples were evaluated by DSC using DSC 822e (Mettler Toledo, Switzerland). Accurately weighed approximately 3 mg of the sample and placed in a 40 µL standard aluminium pan. The pan was hermetically sealed and punctured with one pin hole. The scanning rate was held constant at 10 °C/min and the scanning temperature range was from 25 °C to 250 °C. Dried nitrogen gas at the rate of 60 mL/min was purged throughout the study to avoid oxidative decomposition upon heat treatment. DSC calibration using standard indium was periodically done. Evaluation of the diffractograms obtained by DSC was done using STARE software for data processing.

Crystals which were found to have possibility of forming new solid state structure(s) will be further characterized by the following studies.

Fourier transform infrared spectroscopy (FT-IR)

The samples were thoroughly mixed with dried KBr powder and finely ground in an agate mortar. The sample-KBr mixtures were then transferred between two stainless steel punches and compressed with a hydraulic press to form compact pellets. Infrared spectra were obtained by an infrared light source at 20 scans and 4.00 cm⁻¹ resolution. The spectral wave number was collected from 4000 - 400 cm⁻¹ by Spectrum One Fourier transform infrared spectrometer (Perkin Elmer, USA).

Thermogravimetric Analysis (TGA)

Accurately weighed approximately 2 mg of sample and placed in a 70 µL alumina sample holder. TGA (TGA/SDTA851e, Mettler Toledo, Switzerland) was done using scanning rate of 10 °C/min and the temperature range was from 25 °C to 250 °C. Dried nitrogen gas at the rate of 60 mL/min was purged throughout the study to avoid oxidative decomposition upon heat treatment. Evaluation for the TGA weight loss behavior was done by using STARE software for data processing.

Scanning Electron Microscopy (SEM)

Crystal habits were observed in detail by scanning electron microscopy (SEM). Samples were carefully placed on the metal stub where it was then sputter-coated with gold under vacuum before the morphology was recorded by SEM (JSM-5410LV, JEOL, Japan).

Chemical analysis

Chemical analysis was done to evaluate the ratio of ART to AQD in the suspected cocrystals produced.

High Performance Liquid Chromatography (HPLC)

Sample preparation

To evaluate the amount of ART in recrystallized crystals, one milligram of the selected crystals obtained from cocrystallization was dissolved in 2 mL of acetonitrile in water (1:1). The final concentration of 0.5 mg/mL was filtered through 0.45 µm nylon (VertiPure™) membrane filter.

Condition

HPLC analysis of ART was modified from the artemisinin monograph in the International Pharmacopeia 2003. The present method used gradient condition (Table 1) with diode-array detector. Mobile phase consisted of water: acetonitrile (2:3). The sample was pumped through Inertsil® ODS-3 4.6x250 mm (with 5 µm particle sizes as stationary phase) at a flow rate of 1.0 mL/min. The sample was evaluated at a wavelength of 201 nm.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Water (%v/v)</th>
<th>Acetonitrile (%v/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-17</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>17-18</td>
<td>40 to 0</td>
<td>60 to 100</td>
</tr>
<tr>
<td>18-19</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>19-20</td>
<td>0 to 20</td>
<td>100 to 80</td>
</tr>
<tr>
<td>20-28</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>28-29</td>
<td>20 to 40</td>
<td>80 to 60</td>
</tr>
<tr>
<td>29-65</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

Physicochemical analysis

To study the effect of water on the proposed cocrystal structure(s), all samples were evaluated for their responses after exposure to water in the liquid or vapor states.

Dynamic vapor sorption (DVS)

Transformation of recrystallized crystals due to water vapor was monitored by dynamic vapor sorption (DVS) apparatus (Intrinsic, Surface Measurement Systems, Ltd, UK). Adsorption isotherms were obtained at a controlled temperature of 30 °C. The samples were exposed to increment at increase in relative humidity (RH) from 0 % RH to 100 % RH. Changes in the sample weight were periodically recorded.

Solubility profiles of ART

Excess ART crystals were placed in 14 mL vessels containing purified water immersed in circulating water bath at a controlled temperature of 30 °C. The amounts of dissolved ART were evaluated at 15, 60 and 180 minutes. The sample collected at each time period was filtered through 0.45 µm nylon (VertiPure™) membrane filter, diluted with appropriate solvents and evaluated by HPLC method mentioned previously.

For recrystallized crystals, the experiment can not be done with excess amounts due to limited number of crystals.
obtained per batch. Alternatively, the solubility of the crystal was evaluated by accurately weighing predetermined recrystallized crystals and placed in vessels containing purified water immersed in circulating water bath at a controlled temperature of 30 °C. The amounts of dissolved ART were evaluated at 15, 60 and 180 minutes. Sample collected at each time period was filtered by 0.45 µm nylon (VertiPure™) membrane filter, diluted with appropriate solvents and analyzed by HPLC.

In-vitro antimalarial test (Microculture radioisotope technique)

The in-vitro antimalarial tests of recrystallized crystals, control group and starting material of ART and AQD were evaluated. Samples were dissolved in dimethyl sulfoxide (DMSO) and the final concentration of samples was adjusted to 10 mg/mL. The diluted samples were tested against *Plasmodium falciparum*; K1 Strain. Inhibition concentrations (IC50) were recorded for the positive controls which were dihydroartemisinin (1.35 nM) and mefloquine (0.0268 µM), and the negative control was 0.1 % DMSO.

(Remark: The test was done at National Center for Genetic Engineering and Biotechnology: BIOTEC, Thailand Science Park, Pathum Thani, Thailand)

Results and Discussion

Cocrystallization of ART and AQ

From the XRPD results, cocrystallization of ART and AQD at 1:1 mole ratio showed optimum starting amounts of reactants (ART and AQD) (data not shown). An increased amount of ART or AQD in both directions, resulted in the dominant characteristics of the reactants whichever are present in greater amount. When ART and AQD were separately recrystallized under the same cocrystallization condition, ART did not change but AQD converted to amodiaquine dihydrochloride monohydrate (AQM) form. XRPD results of ART and AQD cocrystallized at 1:1 mole ratio showed XRPD patterns similar to AQM but with the appearance of additional peak positions at 13.4, 16.2, 23.8, and 29.8°2θ, and with absent peak at 28.2°2θ (Figure 2).

From the results, the cocrystallized crystals of ART and AQD at 1:1 mole ratio in ethanol was selected for further evaluations and will be presented as Rec-ART-AQD (1:1).

To identify the differences in Rec-ART-AQD (1:1) to AQM, samples were further evaluated by FT-IR and compare to the starting materials (ART and AQD). ART spectrum showed dominant peak at 1738 cm⁻¹ representing C=O functional group (Figure 3). While FT-IR spectra of Rec-ART-AQD (1:1) and AQM in Figure 3 were similar but dramatically different from ART and AQD. However, there are some notable differences on FT-IR spectra between AQM and Rec-ART-AQD (1:1) despite their similarities. The peak at 3440 cm⁻¹ was absent in Rec-ART-AQD (1:1) where it represents non hydrogen bonded –NH stretching on both AQM and AQD. The absence of 3440 cm⁻¹ in Rec-ART-AQD (1:1) may be due to H-bonded interaction with ART at that –NH functional group, hence, diminishing its peak.

As a result from FT-IR study, the possible H-bonding sites for ART and AQM are postulated in Figure 4. The first evidence for H-bonding was seen as the wavenumber at 3440 cm⁻¹ for secondary amine stretching (–NH stretching) was absent at N2 position of AQD in Rec-ART-AQD (1:1). This may due to the peak shift to lower wave number when electrons of hydrogen in secondary amine were withdrawn towards a higher electronegativity oxygen atom in C=O functional group of ART. The second possible H-bonding site may be between C19 of AQD and O4 of ART where they shared the electrons of H from C19 position in AQM. However, no evidence from FT-IR was shown, due to the
possibility of the very low signal and the overlapping nature of C19 in aromatic group in AQD. FT-IR signals obtained from ART functional group in Rec-ART-AQD (1:1) spectrum were all very low and could not be separately identified in Rec-ART-AQD (1:1).

Figure 4 The postulated H-bonding sites for ART and AQM from evidence obtained by FT-IR studies.

Table 2 The comparison of endothermic energy calculated for AQM and Rec-ART-AQD (1:1) from DSC thermograms at a heating rate of 10 °C/minute from 25-250 °C.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Energy (J/g) (170 °C)</th>
<th>Energy (J/g) (190 °C)</th>
<th>Energy (J/g) (215 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQM</td>
<td>139.59</td>
<td>17.67</td>
<td>10.76</td>
</tr>
<tr>
<td></td>
<td>(2.04)</td>
<td>(5.81)</td>
<td>(1.47)</td>
</tr>
<tr>
<td>Rec-ART-AQD (1:1)</td>
<td>121.187</td>
<td>13.36</td>
<td>12.33</td>
</tr>
<tr>
<td></td>
<td>(8.40)</td>
<td>(6.15)</td>
<td>(2.29)</td>
</tr>
</tbody>
</table>

To study thermal behaviors of Rec-ART-AQD (1:1), DSC and TGA analysis were used. DSC thermogram of Rec ART-AQD (1:1) was similar to AQM with one large endotherm followed by two smaller endothermic events at approximate temperatures of 175 °C, 200 °C and 225 °C (Figure 5). Although, the thermal patterns were similar, the energy used was quite different as shown in Table 2. The average endothermic dehydration energy of Rec-ART-AQD (1:1) between 130 °C to 180 °C was shown to be lower than the energy obtained for AQM. Another important aspect to note was that the onsets of the dehydration endotherm began several degrees earlier than AQM. These DSC results suggested that Rec-ART-AQD (1:1) structure was mainly arranged similar to AQM but with minor loosening of the molecular arrangements allowing water molecules to escape at slightly lower temperature than the original AQM.

In addition, the samples were also characterized for their thermal behavior by TGA (Figure 6). ART thermogram displayed weight loss due to degradation starting at 150 °C onwards. Whereas, TGA thermogram of Rec-ART-AQD (1:1) illustrated one step weight loss of 3.1 % by weight starting at 150 °C comparable to monohydrate AQM which showed weight loss of 3.5 % by weight. It could be concluded from these TGA results that the total number of water molecule dehydrated from Rec-ART-AQD (1:1) per gram was slightly less than the amount of water molecule released from an equivalent weight of AQM. The results correlate well with the experiments obtained by DSC which may be due to the minor repetitive replacement of some water molecules in the main AQM crystal structure with ART in Rec-ART-AQD (1:1).

The habits of every sample were evaluated by SEM. ART crystals showed needle-like habit as shown in Figure 7 (A). AQD crystals showed pale yellow with small needle-like habit (Figure 7 (B), whereas AQM was larger rhombohedrons (Figure 7 (C)) with dark orange color.
Rec-ART-AQD (1:1) crystals displayed dark orange color (Figure 7 (D)) similar to AQM. However, when the crystals were observed under high magnification polarized microscope, AQM was transparent while Rec-ART-AQD (1:1) was opaque.

Rec-ART-AQD (1:1) was also evaluated by isothermal dynamic vapor sorption apparatus (DVS) at 30 °C within the relative humidity range of 0-100 %. The result showed that non-significant amount of water was adsorbed on the crystals’ surface. The highest amounts of surface moisture collected on ART and Rec-ART-AQD (1:1) crystals equilibrated at 100 %RH (Figure 8) were only 0.21 %w/w and 0.72 %w/w, respectively. While amounts of moisture of AQD and AQM were 1.44 % and 0.44 %, respectively. It could be concluded that every crystal form evaluated in this study were physically stable to wide range of humidity levels and no water uptake in the form of vapor or gas were seen.

From the preliminary solid state characterization results, only XRPD technique illustrated a clear distinction between Rec-ART-AQD (1:1) and the control group. In addition, thermal analyses further showed evidences of the incorporation of ART in Rec-ART-AQD (1:1) comparing to control. Therefore, to ensure the incorporation of ART in the crystal lattice, chemical analysis on Rec-ART-AQD (1:1) was done to directly determine the amounts of ART and AQM in the recrystallized structure.

Table 3 Amounts of ART and AQM in Rec-ART-AQD (1:1) determined by HPLC analysis.

<table>
<thead>
<tr>
<th>Lot#of Rec-ART-AQD (1:1)</th>
<th>Weight of ART (µg)</th>
<th>Weight of AQM (µg)</th>
<th>Mole ratio (ART:AQM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.17</td>
<td>964.83*</td>
<td>1:16</td>
</tr>
<tr>
<td>2</td>
<td>34.61</td>
<td>965.39*</td>
<td>1:16</td>
</tr>
<tr>
<td>3</td>
<td>35.21</td>
<td>964.79*</td>
<td>1:16</td>
</tr>
</tbody>
</table>

Remark: *Amounts of AQM obtained by subtracting the amounts of analyzed ART from the original weight of Rec-ART-AQD (1:1)

The amounts of ART and AQM within Rec-ART-AQD (1:1) crystals were evaluated by HPLC. Three different recrystallized batches of Rec-ART-AQD (1:1) were harvested and evaluated. The results showed that the average amount of ART was approximately 35.00 µg in 1000.00 µg of Rec-ART-AQD (1:1) (Table 3). The amount obtained was calculated as mole ratio where it was found to be 1:16 (ART: AQM). From this result, one could explain why some previous solid state characterization techniques could not be used to differentiate between AQM and Rec-ART-AQD (1:1). This is due to the fact that the amount of ART in the crystals was negligibly low, hence, the properties of ART were obscured by the dominant AQM. However, these results confirmed that ART did exist in Rec-ART-AQD (1:1) crystals and distributed within the main crystal structure in a uniform repetitive manner.
Water solubility of ART was done under controlled temperature at 30 °C. Amount of ART dissolved was initially determined using short intervals to monitor the possible polymorphic transformation that may occur. The result showed that the saturated solubility of ART reached equilibrium at 59.87 µg/mL within 30 minutes (Figure 9). In the case of Rec-ART-AQD (1:1), the normal solubility evaluation could not be used due to two main limitations. First, the amount of Rec-ART-AQD (1:1) crystals produced per batch was very limited and not sufficient to be used in excess. Second, allowing excess Rec-ART-AQD (1:1) crystals to dissolve freely in water to perform solubility experiment, high amount of AQM will dissolve and may interfere with the chemical analysis using HPLC. ART peak in HPLC was undetectable due to very low amount of ART present in Rec-ART-AQD (1:1) crystals and/or the large AQM peak area overlapped with the smaller ART peak. Thus ART peak could not be identified under normal HPLC condition and method.

Therefore, different approach was taken to evaluate the solubility of ART in Rec-ART-AQD (1:1) crystals. Rec-ART-AQD (1:1) crystals were weighed equivalent to two folds of ART saturated solubility (100 µg) by calculating from the ratios obtained in Table 3. The amounts of ART dissolved were determined at various time intervals. The results showed that the amount of ART increased with time upto 180 minutes (Figure 9) where the trend was still continuously increasing. At 180 minutes, the amount of ART dissolved from Rec-ART-AQD (1:1) was found to be 79.81 µg/mL while usual ART saturated solubility was found to be only 59.87 µg/mL. After 15 hours, the amount of ART solubilized out from Rec-ART-AQD (1:1) was found to return to normal saturated solubility of approximately 53.37 µg/mL. This may be due to the recrystallization of ART back to its original solid state structure during the final phase of solubility evaluation. This increased ART solubility in Rec-ART-AQD (1:1) of up to 33.41 % in 180 minutes maybe due to the loosening of the solid state structure detected by DSC and TGA and the possible uniform molecular intervention of ART within Rec-ART-AQD (1:1) crystal lattice as seen by FT-IR.

To confirm the antimalarial activity, all samples were tested against *P. falciparum*, K1 strain. The results showed that IC₅₀ of ART (RM) was 0.0030 µg/mL (Table 4). While, IC₅₀ of AQD and AQM were essentially the same at 0.0287 and 0.0283 µg/mL, respectively. When Rec-ART-AQD (1:1) was evaluated, the results were not as active as pure ART. However, Rec-ART-AQD (1:1) was found to be slightly more active than AQD and AQM with average IC₅₀ of 0.0268 µg/mL. This slight increase in Rec-ART-AQD 1:1 antimalarial activity may be due to the incorporation of the minute amount of ART molecules within the crystal lattice as predicted earlier.

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC₅₀ (µg/mL)</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART (RM)</td>
<td>0.0030</td>
<td>Active</td>
</tr>
<tr>
<td>AQD</td>
<td>0.0287</td>
<td>Active</td>
</tr>
<tr>
<td>AQM</td>
<td>0.0283</td>
<td>Active</td>
</tr>
<tr>
<td>Rec-ART-AQD (1:1)</td>
<td>0.0268</td>
<td>Active</td>
</tr>
</tbody>
</table>

Hence, many solid state characterization methods were not sufficiently sensitive to detect these minor differences in the incorporation of only a molecule of ART within 16 molecules of AQ in the AQM crystal lattice, such as FT-Raman or ATR-IR. From the results obtained by XRPD and FT-IR, it could be concluded that Rec-ART-AQD (1:1) crystals was a new solid state morphology when comparing to different control group. Thermal analyses by DSC and TGA illustrated minor differences in energy consumption between Rec-ART-AQD (1:1) and AQM. In addition, analyses by HPLC confirmed that ART actually existed in Rec-ART-AQD (1:1) crystal with mole ratio between ART and AQM of 1:16. It can be simplified as an illustration seen in Figure 10 comparing AQM and Rec-ART-AQD (1:1) crystal arrangements. In AQM crystal structure, four molecules of AQ are aligned with four molecules of water. When ART and AQD were cocryrstallized by temperature-change technique with ethanol as solvent, the recrystallized crystal incorporated one molecule of ART in, what otherwise, AQM crystal packing.
Conclusion

The cocrystallized crystals of ART and AQD obtained from ethanol at a mole ratio of 1:1 (Rec-ART-AQ (1:1)) showed distinctively different XRPD, FT-IR, DSC and TGA results from control. Amount of ART in Rec-ART-AQ (1:1) cocrystals, its equilibrium solubility was found to be 1 in 16 parts of AQ on mole basis. Despite minor amount of ART in the Rec-ART-AQ (1:1) cocrystals, its equilibrium solubility was shown to be 33.41% higher than ART equilibrium solubility. Rec-ART-AQ (1:1) also showed slight increase in antimalarial activity when compare to AQD. Hence, it could be concluded that Rec-ART-AQD (1:1) was a new solid state morphology with solid state characteristics distinctively different from control and starting materials.

Acknowledgments

Authors would like to acknowledge the Chulalongkorn University Centenary Academic Development Project, Pharmaceutical Research Instrument Center, the Faculty of Pharmaceutical Sciences, Chulalongkorn University and the Faculty of Pharmacy, Siam University for analytical instrument support.

References