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CHAPTER 1
INTRODUCTION

In 1788, Fourier introduced a question about the arrangements of 17 lines on the
plane so that they formed 101 points of intersection, and no point of intersection
belonged to more than two lines. In 1980, Turner [] and Webster [] found four
different arrangements as in Figure @ and there was a further study about this
problem with the unrestricted number of lines passing each point of intersection
which gave combinatorial formulas related to the geometry of lines and points on

the plane.

Figure 1.1: Four different arrangements of Fourier’s 17 line problem

Definition 1.1. Given n lines on the plane, a parallel family is a group of all
lines from the n lines which are all parallel to each other, and a line having no other
line in its parallel family is called a single line. Let W be a point of intersection.
The degree of W is the number of lines from the n lines passing W, and we call

W a multiple point if there are more than two lines passing W.

Definition 1.2. Given n > 1 lines with M > 0 points of intersection, a code A
of an arrangement of these lines is a representation of the arrangement.

For M > 1, A is denoted by

<<)‘17)‘27 ) >\M|,u1,[L2, ...,,up>>,

where



1. \; is the degree of the i point in A for i = 1,..., M, and \; > \;4; for all
ji=12 .., M-1,

2. y; is the number of lines in the i** parallel family in A for i = 1, ..., P, and

fi > iy forall y=1,2,..., P —1.

Otherwise, A is denoted by

((m1, p2s oo pip)),s

where ji; is the number of lines in the ** parallel family in A for i = 1, ..., P, and

f > prjqn forall j=1,2,..., P —1.

Notice that for A in the Definition @, P is the number of all parallel families.
Let m be the number of multiple points and p be the number of nontrivial parallel
families. We have that if A has multiple points then A\; > Xy > ... > A\, > 3
and A\jypi1 = Apge = ... = Ay = 2 where 1 < m < M, and if A has nontrivial
parallel families then p; > po > ... > pp, > 2 and pipr1 = flpr2 = ... = pp = 1
where 1 < p < M. For a code of an arrangement, we define m, P, and p in the
same way as for A in the Definition . For the code with many copies of A;’s
and u;’s we sometimes substitute )\jkl and p;*? for k; copies of Aj’s and ko copies
of u;’s respectively. For example, the code ((3,3,2,2,2,2,2,2,2,2,/2,22|3,2,1,1))
of 7 lines forming 13 points can be written as ((32,2!1]3,2,12)).

Remark 1.3. A code can be shortened by omitting A; for all j with \; = 2 and
omitting pu; for all ¢ with p; = 1. We use single brackets for the shortened code so
it can be written as
(A5 Ay ooy Al 15 oy ooy ) -
In 2012, Alexanderson and Wetzel [[1] studied the perplexities related to Fourier’s

17 line problem by dividing this problem into no parallel case and no restriction

case and gave some necessary conditions of possible arrangements which are

jf; KAQJ) = 1} + Ep; (‘;) — 35, (1.1)



p
> i <17, (1.2)
=1

A §p+17—iui. (1.3)
i=1

Supplementary to [[], Lichtblau and Wichiramala [4], by using computational
programming, found that there are 924 codes for Fourier’s 17 line problem satis-
fying the necessary conditions (@), (@), and (@)

The problem is that whether all 924 codes are realizable and, moreover, Alexan-
derson and Wetzel also mentioned the remark by Douglas West on the difficulty of
finding all different ways that 10 lines in general position can be arranged which
is a special case for the generalized problem.

As all problems above are still open, we are interested in the problem of the
arrangement of n lines intersecting on the plane and forming M points. The aims
of this work are to find more necessary conditions and to provide a systematic al-
gorithm to draw the possible arrangements and to find a way to obtain all different

patterns.



CHAPTER II
PRELIMINARIES

In this section, we present some definitions, notations, lemmas, and remarks
which will be useful for this work.
Here we may assume that the ends of all straight lines meet together at infinity

and the number of points of intersection does not include the infinity point.

2.1 Pictures and Patterns

Definition 2.1. Suppose there are n lines on the plane. The picture of the lines

is a set of point (x,y) € R? that lies on some of these lines.

Notice that there are one-to-one correspondences between pictures and sets of

lines on the plane.

Definition 2.2. Two pictures are said to be the same if there is a composition
of a translation, a rotation, and possibly a reflection that maps one picture to be

the other. Otherwise, they are said to be different.

Example 2.3. According to Figure @, pictures A and B are the same because
there is a rotation R(z,y) = (zcos§ — ysin g, zsin g 4+ ycos §) and a translation

T(x,y) = (x4 3,y + 2) such that T'o R(A) = B.



A T(R(A))

Figure 2.1: The same pictures A and B

Definition 2.4. Let A be a picture. The pattern of A is a planar graph where
every vertex corresponds to a point of intersection of the lines including the point
of infinity and every edge corresponds to a segment of any line partitioned by

points of intersection.

Definition 2.5. Two patterns are said to be the same if they are graph isomor-

phic. Otherwise, they are said to be different.
Remark 2.6.
1. A code may have more than one corresponding patterns.

2. Since the ends of lines meet together at infinity, each pattern has a vertex

at infinity having the maximum degree, twice the number of all lines

We can observe that the same pictures will have the same patterns and two

different pictures may possibly have the same pattern.



Example 2.7. Let A and B be pictures. Let G4 and G be patterns of A and B

respectively as illustrated in Figure @

Figure 2.2: A and B (top) with their patterns G4 and Gp (bottom) respectively

Let vy and wy be vertices at infinity of G4 and G g respectively. We can see that
pictures A and B are different but patterns G4 and G'g are the same because there
is a graph isomorphism f between the vertex sets of G4 and G with f(v;) = (w;),

i=0,1,..,6.

2.2 Codes of an Arrangement

As we define codes of arrangements in Chapter I, we will give some formulas

for codes related to their graphs.

Robert’s Formulas. [[I] Suppose n lines has an arrangement A = ((Ay, Aa, ..., Aps|
1, fh2, .., fbp)) on the plane. Then A forms

n M )‘j —1 ul 2% .

C=14+n+ (2) —Z( 5 ) —2 (2) regions,

7j=1 3



M P
E=n?— ; Aj(A;—2) =2 ; (gl) segments and rays, and
v=(")- i A 1| — Z 1 points (2.1)
2 j=1 2 i=1 .

2.3 Manipulation of pictures

In this work, we define a (rigid) motion to be a composition of rotations and
translations of some lines, and we define a perturbation to be a motion (of some

lines) without changing the pattern.

Definition 2.8. Let A and B be pictures. We said that picture A and B are
combined to be a picture C' if there is a motion ¢; and ¢, such that C is the

union of ¢1(A) and ¢o(B).

Affine Transformation. A transformation f of the plane of the form f(¥) =
AZ + b where A is an invertible matrix is called an affine transformation of
the plane. The inverse of an affine transformation of the plane is also an affine
transformation of the plane. And a composition of affine transformations is an

affine transformation.
Theorem 2.9. Let f(¥) = AZ + b be an affine transformation. Then
(1) f maps a line to a line,
(2) [ maps a line segment to a line segment,
(3) [ preserves the property of parallelism among lines and line segments,
(4) f maps an n-gon to an n-gon,
(5) f maps a parallelogram to a parallelogram,
(6) f preserves the ratio of lengths of two parallel segments, and

(7) [ preserves the ratio of areas of two figures.



Examples of affine transformations include translation, scaling, similarity trans-
formation, reflection, rotation, shearing (as Figure @), and compositions of them

in any combination.

Figure 2.3: A picture mapped by shear mapping with the fixed line L

Theorem 2.10. Given two ordered sets of three mon-colinear points each, there

exists a unique affine transformation f mapping one set onto the other.

2.4 Implicit Function Theorem

Theorem 2.11. Let f : R"™™ — R™ be a continuously differentiable function, and

let R™™ have coordinates (x,y) = (X1, T2, -y T, Y1, Y2, -, Ym)- Fiz a point (a,b) =

(@1, ey Apy by, oy b)) with f(a,b) = (fi(a,b), fa(a,b), ..., fm(a,b)) = 0, where 0 €
0fi
dy;

then there exist an open set U of R" containing a, and a unique continuously

R™ is the zero vector. If the Jacobian matriz Jg,(a,b) = (a,b)| is invertible,

differentiable function g : U — R™ such that

gla) =0

and for all x € U,
fz,g(x)) = 0.

Moreover, the partial derivative of g in U are given by

g_xi(x) - Z(Jﬁy(% g(:C))l)ﬂ%

- %
7

(z,9(x)).



Example 2.12. Let f:R* - R, f(z,y) = 2% + ¢? for (z,y) € R

Consider the equation f(x,y) = 1 which is a unit circle. We cannot represent a
unit circle as a graph of a function of one variable y = g(x) because for z € (—1,1),
y=+v1— 22,

We will use the implicit function theorem to represent part of the circle as

the graph of one variable. At (zg,y0) = (3, \/75), f(zo,y0) = 1 and the Jacobian

matrix J, (7o, o) = [g—i(ﬂio,yo)} = [Qy(%ag)}

implicit function theorem, there exist an open set U of R? containing z,, and a

= [\/5} which is invertible. By
unique continuously differentiable function g : U — R such that

9(wo) = yo

and for all z € U,
fla,g(x)) = 1.

Figure 2.4: Set of part of a unit circle represented as a graph of the function g

In Figure @, we may choose U to be the set (0, 1) which contains % and g is a
unique continuously differentiable function g(x) = /1 — 22 for all x € (0, 1) such
that g(3) = ‘/73 and f(z,g(x)) =1 for all z € (0,1).



CHAPTER I11
NECESSARY CONDITIONS FOR CODES OF
ARRANGEMENTS

Using (El]), we may easily derive the following generalized necessary conditions

to (1), (1.2), and (L.3).

Lemma 3.1. Let A = (A1, A2, ooy Ay ooy Aar |15 2y <ovy flpy - o)) be the code of

an arrangement of n lines forming M points. Then

2 ()2 ()= () - o1

j:1 =1

or, equivalently,

p
> pit+P-p=n, (3.5)
=1
p
M<ptn—) u (3.6)

Proof.
Equation (@) can be directly derived from Roberts’ fomulas, where V' = M.
Equation (@) is obvious by definition of codes of arrangements. Inequality (@) is

clear since the point with highest degree is formed by Ay lines with distinct slopes.

Equation (@) is equivalent to (Ell) since Zj]\imﬂ [(’\QJ) —1] and Z;pﬂ (%) are
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equal to 0 because \; = 2form < j < M, p; = 1forp <i < P, and (;) = 0. Equa-
tion (@) is equivalent to (@) by the definition of codes of arrangements. Inequal-
ity (@) is equivalent to (@) because n =Y P ui—i-Zf:pH pi =5 i+ (P—p)
since u; = 1 for p <1 < P.

Here we give the another proof of an equation (@) and (@) which is different
from the proof of (@) in Robert’s formula.

Let A = (A1, A2y ooy Ay ooy Ang |1, fhy <oy fhpy -y pp)) be the code of an arrange-
ment of n lines forming M points. Note that each two lines that are not parallel
has a meeting and there is no meeting of each two lines in the same parallel fam-

ily. We have that the number of meetings is (;) —-5F, (‘;’) which is equal to
M )
> i1 (’\5) Then

Hence we get (@)

To prove (@), we have that p in (@) can be replaced by P because () =
forallp+1<i<Pso(3) -0, () -M=1 (%) M= (%) - ]
Hence we get (@) O

Example 3.2. Considering the arrangement of 4 lines, we get 8 different patterns

corresponding to the codes in Figure @ We found that ((3,3|1,1,1,1)) also
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satisfies the necessary conditions (), (@), and () but cannot be drawn as it
needs at least 5 lines to form 2 points of degree 3. This shows that there are more

necessary conditions for codes of arrangements to be found.

((4/1,1,1,1)) ((3,2,2,2]1,1,1,1)) | [{(3,2,2]:

- X ||
VAN
/ N/ N\ ||

[ a9 0 o 9 LY fa a9 qg o «
((2,2,2,2,2,2]1,1,1,1)) ((2,2,2,2,

-
bt
(S}
b3
[a—
[a—

—

——

[
o]
o]

L]

[S]

[Sv]

—

| SN
b2
o
b
b
=
[
—
~
2
3
[ (]
o
f—

Figure 3.1: Patterns of 4 lines and their corresponding codes

Theorem 3.3. For the code of an arrangement of n lines forming M points, we

have

M
Zmax{/\j —Jj+1,0} <n (3.8)

j=1
Proof. Let a code A be given.

Case 1 : A has no multiple point

For M =1, we have n = 2. For M > 2, we have n > 3 and maxz{\;—j+1,0} =
0 for all j =3,4,.., M. Thus 337 maz{\; — j + 1,0} < n.

Case 2 : A has multiple points.

We will consider the least number of lines needed to form all points satisfying
this code.

i) To form the first point with degree \;, we need \; lines with distinct slopes.

ii) To form the second point with degree Ay, we need at least new Ay — 1 lines
with distinct slopes since the second point may lie on a same line of the first point.

iii) To form each next point j = 3,4, ..., M, we do not need more lines if that
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point has already formed by many former lines, or we may add only A\; — (j — 1)
lines pass through some other point of degree j — 1 formed by many former lines.

Note that A\; — 7 + 1 can be positive, zero, or negative. That is lines may be
needed or may not for forming each new point. From i)-iii), the number of lines
we need to form all points is Zj\il maz{\; — j + 1,0} which must not be more

than n. Thus we get (@) O

We found that (@) cannot be derived from (@), (@), and (@) because the
code ((3,3|1,1,1,1)), which are not drawable (see Example ), satisfies (@),
(@), and (@) but fails (@) There may be more necessary conditions for codes
but we did not find an example where a code satisfies these four conditions but

cannot be drawn.



CHAPTER IV
REALIZATION OF AN ARRANGEMENT BY
DIRECTLY DRAWING

As it is too difficult to find necessary and sufficient conditions for a code to
be drawn, we then find a direct method to realize a code. One method to check
whether a code is drawable is to directly draw.

Notation We will give some note for this chapter.

(1) We use R for the set RU {oo} and we use p; for (z;,y;) € R2.

(2) Point refers to point of intersection. Segment refers to both segment from

given lines and segment on the plane not shown in a picture.
(3) The slope of a vertical line is co.

(4) For convenience, we assume that the given lines are not vertical. And the
equation of a line on the plane is in the form x = ¢ or y = mx + ¢, where

(r,y) € R?2, m € R, and c € R.

4.1 Adding Lines

Lemma 4.1. Let py,po, ..., pr be given points and Ly, Lo, ..., L, given lines on the

plane. Then

(1) There exists a line L parallel to a certain line L; for some 1 <i <r and

not passing through any point p; for all1 < j <k.

(2) There exists a line L not parrallel to any line L; for all 1 < i <r and any
segment formed by p; for all 1 < j < k, and not passing through any point
pj foralll <j<k.
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(3) There exists a line L passing only one point p;,, 1 < jo < k and not parallel

to any line L; for all1 <1 <1 and any segment formed by p;, 1 < j < k.

(4) Let i € ZT. Then there exist distinct parallel lines Ly, Ly, ..., L, not
passing through any point p; for all 1 < j < k and parallel to a certain line

L; for some 1 <1 <.

(5) Let o, pu € ZT be such that pg < p and pog < k. Then there exists distinct
parallel lines LY, Ly, ..., L, not parallel to any line L; for all 1 <1 <1 such
that each L}, | = 1,2, ..., o, passes only one distinct point p;,1 <1 < py,

and each L}, | = pig + 1, po + 2, ..., pu, does not pass any point p;,1 < j <k.

Proof.

(1) For j =1,2,...,k, let p; = (x;,y;). Let L;, be a certain line having slope my.
Let C = {—mox; +y;|j € {1,2,...,k}}. Then C is finite. There is ¢ € R\C. Then
c# —mox;+y; forall j € {1,2,...,k}. Let L be a line with equation y = moz +c.
To claim that L does not pass any point, suppose L passes a point p;, = (2j,, Yj,)
for some jo € {1,2,...,k}. Then y;, = mox;, + c. So ¢ = —mx;, + iy, & contra-
diction. Thus there exists a line L parallel to a certain line L;, and not passing
through any point p; for all 1 < 5 <k.

(2) For each i = 1,2,...,r, let m; be slope of L;. For each j, I = 1,2,....k
with j # [, let 7 ; be a slope of segment formed by p; and p;. Let S = {m;|i =
L..,ryU{mjlj,l =1,2,...,k,j # l}. Since S is finite, there is my € R\S. Similar
to (1), we can choose ¢ # —mgz; +y; for all j € {1,2,...,k}, and then let L be
a line with equation y = myx + ¢. Hence L is not parallel to any line L; for all
1 <4 < r and any segment formed by p; for all 1 < j < k, and does not pass
through any point p; for all 1 < 5 < k.

(3) For each i = 1,2,...,r, let m; be slope of L;,. Let pj, = (xj,,vj,) €
{p1,p2, ..., pr} be a point such that a line L passes through. For each j,l =1,2,....k
with j # [, let 7, be a slope of segment formed by p; and p;. Let S = {my;lj,1 =
1,2k, j # 1} U{mi,mag,....,m.}. Then S is finite, so there is m € R\S. Let L

be a line with equation y = ma — mx;, + y;,. Thus L passes only one point pj,
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and it is not parallel to any line L; for all 1 < i < r and any segment formed by
i 1<j<k.

(4) By (1), there exists a line L} parallel to a certain line L; for some 1 <i <r
and not passing through any point p; for all j = 1,2,...,k. Let C; be the set of
points of intersection between L] and L;, 1 = 1,2, ..., 7.

Now consider the elements in {p1, ps, ..., px JUC as given points and Ly, Lo, ..., L,, L
as given lines on the plane. By (1), there exists a line L/, parallel to a certain line
L} and not passing through any point in {py, p2, ..., px} U C;. Let Cy be the set of
points of intersection between L) and L;, 1 = 1,2, ..., 7.

Now consider the elements in {p;,ps,...,px} U C; U Cy as given points and
Ly, Ly, ..., L., L}, L, as given lines on the plane. By (1), there exists a line L} paral-
lel to a certain line L; and not passing through any point in {py, ps, ..., px }UC1 UC5.

We can continue this process for the lines L;,l = 4,...,u. Hence there ex-
ist distinct parallel lines L7, Ly, ..., Lj, not passing through any point p; for all
7 =1,2,....k and parallel to a certain line L; for some 1 <17 < r.

(5) By (3), there exists a line L} passing only one point p;, and not parallel
to any line L; for all ¢ = 1,2,...,r and any segment formed by p;, 1 < j < k.
Let m} be the slope of L. For each | = 2,3, ..., uo, let L] be a line with equation
y =mix —x;, +y;,. We get distinct lines L], = 1,2, ..., yo, each L] passes a point
pj,- Let O be the set of all points formed by each L; and each L;, [ = 1,2, ..., pio,
1=1,2,...,r.

Now consider Lj, | = 1,2, ..., pg, and L;, | = 1,2, ..., 19, as given lines and the
elements in {py, ps, ..., pr} U O as given points. By (4), there exist distinct parallel
lines L}, = po+1, pio+2, ..., 1, not passing through any point in {py, pa, ..., pr fUO
and parallel to a certain line L]. Hence there exist distinct parallel lines Lj,
[ =1,2,...,u, not parallel to any line L; for all 1 <7 < r each L}, [ = 1,2, ..., po
passes only one distinct point p;,,1 <1 <y and each Lj, I = po + 1, o + 2, ..., 1,

does not pass any point p;,1 < j < k. [

From now on, we assume that a code satisfies the necessary conditions (@),

(.2, B4), and B.9).
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Proposition 4.2. Let A = ((A1, A2, ooy Ay ooy As |1, 2y ooy flpy -y pip)) e @ code
of n > 3 lines forming M > 3 points. Suppose A satisfies

(1) M=1,\y =nand pu; =1 for alli =1,2,..., P, or

(2) \j =2 forallj=1,2,....,M, or

(3) 25 Aj—m+1<P—p, or

(4) A1 = ... = A, (P;p) >m,p>MN—2and pu; >m foralli=1,...p.
Then A is drawable.

Proof.

(1) Suppose A satisfies M = 1, \y = n and p; = 1 for all e = 1,2,..., P. By
Lemma @(3), we can draw a picture having only one point with degree n.

(2) Suppose A satisfies \; = 2 for all j = 1,2,..., M. Using Lemma @(5),
we can draw each pu;,¢ = 1,2, ..., P, parallel lines not passing any point and not
parallel to the previous parallel families. By Lemma @(2), we can draw P — p
lines not passing any point and not parallel to any line. Hence we get a pattern of
no multiple points.

(3) Suppose A satisfies 3 7" \; —m + 1 < P —p. Note that the number of
lines not parallel to any other line is P — p. To draw all multiple points lying on
only one line, for each multiple point p;, we need additional A\; — 1 lines. So we
need 1+ 37", (A — 1) = >>7"; \j — m + 1 lines to form all multiple points. Since
Z;.n:l Aj —m+1< P —p, we will form all multiple points using Z;nzl Aj—m+1
single lines. In particular, we first draw a line L. We will draw all multiple points
on the line L. By Lemma @(3) and (2), we draw A\; — 1 lines passing through
the same point p; and not parallel to any line, then draw Ay — 1 lines passing
through the a point p, # p; and not parallel to any line, and also we draw \; — 1
lines passing through the a point p; # py, for all j,h € {1,2,...,m},j > h and not
parallel to any line. We get multiple points py, pa, ..., P With degree Ai, Ao, ...; A\
respectively. Using Lemma @(5), we draw y 7, p; lines satisfying ju, po, ..., f4p),
not passing any point and not parallel to any single line. By Lemma @(2), we
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draw (P —p) — (327, Aj — m + 1) single lines not passing through any point and
not parallel to any lines. Hence we get a pattern satisfying A.

(4) Suppose A satisfies A\; = ... = A, (Pz_p) >m,p>X —2and y; >m
for all « = 1,...,p. First, we will draw P — p single lines L1, Lo, ..., Lp_, forming

no multiple points using Lemma @(2) Then there are (P 5" ) points of degree 2.

P—p

9 ) points. We will form multiple points

Let py, po, ..., pm be points from those (
at p; for all j = 1,2,...,m. Since py > m, by Lemma @(5), we can draw fi;
parallel lines L;l), l=1,2,..., 1 such that for each [ = 1,2, ..., m, Ll(l) passes only
one point p; and for each l =m +1,m+ 2, ..., uq, Ll(l) does not pass any point p;
forall j = 1,2, ..., (P;p). Now consider L; and Ll(l) foralli =1,2,...., P —p and
l=1,2,..., 11 as given lines and consider all points formed by those given lines as
given points. Since po > m, by Lemma @(5), we can draw o parallel lines Ll(2),
Il =1,2,..., us such that for each [ = 1,2,...,m, Lz(2) passes only one point p; and
foreach l=m+1,m+2,..., ps, Ll(Q) does not pass any point. Let e = A\ — 2. We
continue this process until we draw . lines of the e parallel family such that for
eachl=1,2,...,m, Ll(e) passes only one point p; and for each | = m+1, m+2, ..., ue,
Ll(e) does not pass any point. We get that there are \; — 2 parallel families such
that for each i = 1,2, ..., \; — 2, the ¢*" family has y, parallel lines passing through
D1, P2, -, Pm, hence all py,pa, ..., p,, have degree 2 + (A; — 2) = Ay, and the other
points have degree 2. Now for each i« = A\; — 1, A1, ..., p, we can draw pu; parallel

lines not passing any point and not parallel all former lines using Lemma (5)
Hence we get a pattern satisfying A. O

Example 4.3. The code ({4,3,3,2%]4,2,1%)) of 17 lines forming 101 points is
drawable.
Since 7", Aj—m+1=28 < 9= P—p, by Proposition , ((4,3,3,2%4,2,1%))

is drawable, and its picture is shown in Figure @
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Figure 4.1: A drawable picture for the code ((4,3,3,2%4,2,1%))

4.2 Composing and Manipulation of pictures

In addition to sequentially adding of a line or a whole parallel family, we can
manipulate and combine picture to get a pattern satisfying a given code. With
every arbitrary picture in proofs, we ignore the case of its reflected picture. In
simple cases, without loss of generality, we can combine two pictures by fixing one
of them then moving and manipulating only the other. And for convenience during

mapping process in proofs, every image of any picture A having the same pattern

as A is also called A.

Lemma 4.4. Let K be a finite subset of [0,7). We can rigidly move the whole
picture so that every line in the picture has the angle with X-axis not equal to any

element in K.

Proof. Let A be a picture containing lines Ly, Lo, ..., L, for some r € N, and F' =
{a1, 09, ...;a;} C [0,7) for some k € N. For each j € {1,2,...,r}, L; has angle
with X-aixs 6; for some unique ; € [0,7). Note that {0 € [0,7)|oy, —0; = ¢
mod 7,7 € {1,2,....k},j € {1,2,...,r}} is finite. There is &y € [0,7)\{0 € [0, 7)]
a;—0; =06 mod mie{l,2,.. ,k},j€{1,2,...,r}}

Let ¢ be a rotation of §y couterclockwise. Then ¢(A) is the same picture such
that for each j = 1,2,...,7, #(L;) is the line having angle with X-axis ¢ € [0, 7)
where 0; + dp = 0; mod T.

To claim that every line in ¢(A) does not have angle with X-axis not equal to
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any element in K, suppose there is L; such that ¢(L;) have angle with X-axis «;
for some i € {1,2,....,k}. Then 6, + 6y = a; mod 7 so 09 = a; — 6; mod 7, a
contradiction. Hence we can move a picture so that every line in the picture has

angle with X-axis not equal to any element in K. [

Lemma 4.5. Let I be a finite subset of R%. We can rigidly move the whole picture

so that every line in the picture does not pass through any element in F.

Proof. Let A be a picture containing lines L, Lo, ..., L, for some r € N, and F' =
{(a1,b1), (az,b2), ..., (ak, b)} for some k € N. Let J = {j € {1,...,7}|L; is a vertical
line}. For each j € J, L, has equation x = h; for some unique h; € R, and
for each j € {1,2,...,7}\J, L; has equation y = m;z + ¢; for some unique
mj,c; € R. Note that {a, — h;|i € {1,2,....k},j € J} is finite. There is
e € R\({a;—h;li € {1,2,...,k},j € J}U{0}). Note that {b; —mja;+m e, —c;li €
{1,2,...,k},7 €{1,2,...,r}\J} is finite. There is ¢, € R\({b; —m;a;, +m e, —c;|i €
{1,2,..,k},7€{1,2,....,r]\J} U {0}).

Let 1 be a translation in the direction of vector m Then 1)(A) is the same
picture as A such that for each j = 1,2, ...,r, if L, is a vertical line then ¢(L;) is
the line having equation x = h; + €, otherwise, ¢/(L;) is the line having equation
y— €, =mj(x —€) + ¢; that is y = mjz — mye, + ¢; + €.

To claim that every line in 1(A) does not pass through any element in F', sup-
pose there is L; such that ¢(L;) passing (a;, b;) for some ¢ € {1,2,....k}. If L; is a
vertical line then a; = hj +¢€, so €, = a; — h;, a contradiction. If L; is not a vertical
line then b; = mj;a; — mje, + ¢; + €, so €, = b; — mja; +mje, — ¢;j, a contracidtion.
Thus for all j = 1,2, ..., 7, (L) does not pass (a;, b;) for all ¢ € {1,2, ..., k}. Hence
we can move a picture so that every line in the picture does not pass through any

element in F'. O

Corollary 4.6. Let K be a finite subset of [0,7) and F a finite subset of R?. We
can rigidly move the whole picture so that every line in the picture has the angle
with X-axis not equal to any element in K and every line in the picture does not

pass through any element in F.
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Proof. Use a composition of the motion following from Lemma @ and the motion

following from Lemma @ to map the picture. [

Note that for two pictures such that every line contains at least two points,
if there is no line of one picture passing through any point of the other then it
implies that there is no point of one picture lying on any point of the other and
there is no line of one picture coincides with any line of the other and hence the
degree of points of each picture does not change.

For the case that there is a line in a picture contains only one point, for example
in Figure @, it is an easy case to draw using only Proposition @(1), or using
Proposition @(1) then Lemma @(1)

Figure 4.2: A picture with a line containing only one point

From now on, we assume that every line in a picture contains at least two

points.

Lemma 4.7. Let A and B be pictures. We can combine without rotating A and

B so that there is no line of one picture passing through any point of the other.

Proof. Since A and B have finite points of intersection, by Lemma @, we can
move B so that every line in B does not pass through all points of intersection of
A and then we can move A so that every line in A does not pass through all points

of intersection of B. O]

We call a combination of A and B in Proposition @ a basic combination of

A and B.
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For two points not lying on a given line, we can say that they are either on the
same side or the opposite side with respect to this line. For a picture A having
a line L, a transformation of a picture preserving sides of all points with respect
to L is a transformation mapping all points in the same side with respect to L to
points in the same side with respect to the image of L and mapping all points on

L to points on the image of L.

Lemma 4.8. Let L be a line in a picture containing at most one multiple point.
Then we can perturb L. In particular, L is rotated preserving side of all lines with

respect to L.

Proof. If L contains one multiple point, then to preserve the multiple point, we
cannot translate L except rotating it about that multiple point. Since the number
of points not lying on L are finite, there is a rotation around that multiple point
which maps L by preserving the side of all points with respect to L.

If L contains no multiple point, then we can translate L a little bit preserving
the side of all points with respect to L.

Clearly, by the definition of patterns and the definition of having the same
pattern, if L is rotated preserving side of all lines with respect to L then the
pattern does not change. Thus the motions of those two cases preserve pattern,

and hence we can perturb L. ]

Corollary 4.9. Let L be a line in a picture such that L has at most one multiple

point lying on it. We can perturb all lines in the picture except L.

Proof. Let A be the picture. By Lemma @, L can be perturbed by some motion
¢. Consider the inverse of the motion ¢. We have that the picture after perturbing
L by ¢ and the picture after perturbing all lines in A except L by ¢! are the same.
That is the motion ¢! maps all lines in A except L by preserving the side of all

points with respect to L. That is we can perturb all lines in a picture except L. [

Lemma 4.10. Let L be a line in a picture. Suppose each line in the parallel family

of L contains at most one multiple point. Then we can perturb the whole parallel

family of L.
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Proof. Suppose the parallel family of L has k lines L1, ..., L. Foreacht = 1,2, ..., k,
if L; containing a multiple point then let p; be such multiple point, otherwise let
p; be any point lying L;. From the construction Lemma @, all Lj,e =1,2,..0k
have a common angle such that the rotation of L; by that common angle about p;
preserves the side of all points with respect to L;. Hence we can perturb the whole

parallel family of L. O

Remark 4.11. From Lemma , the composition of each individual rotation of
the lines in the parallel family of L may change the distance between those lines.
Hence there is no analogy of Corollary @ for perturbation of the whole picture
except the parallel family of L.

Next we will show combinations of two pictures in some following possible cases

we could identify their codes of the combinations;

e A basic combination with no pair of parallel lines (one from each picture),

we call this combination a simple combination.

e A certain line from one picture passes a certain point of the other one and

the other part is a simple combination

e A certain point from one picture lies on a certain point of the other one and

the other part is a simple combination

e A certain line from one picture passes two certain points of the other one

and the other part is a simple combination

e Each of two certain points from one picture lies on each of two certain points

of the other one and the other part is a simple combination.

Proposition 4.12. Let A be a picture corresponding to the code ({(A1, Aa, ..., Angy | 111,
a2, ..y ftpy)) and B a picture corresponding to the code (N, Xy, ..., Ny, |11, ty, oy i)
Then we can make a simple combination between A and B and the code of the com-

bination of A and B is

- - - P Py R
((A1, Az, ~~7)\M1+M2,QZizllmzjilujml,#Q, e P+ Py))s
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where

1. \’s are nonincreasing list sorted from A\,’s, ¢ € {1,2,..., My}, and )\3 s, j €
{1,2, ..., M5},

2. [u’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., P}, and u;- s, J €

1,2, ..., R},

Proof. Since the set of angles with X-axis of lines in A is finite, by Lemma @, we
move B so that no pair of lines, one from each picture, are parallel. Then make a
simple combination between A and B without rotating by Lemma @

Consider the code of combination of A and B. There are P;+ P, distinct parallel
families with the same numbers of members since there is no pair of lines, one from
each picture, are parallel. Every point has the same degree since it is simple combi-
nation. There are new 211'3:11 1L Zfil 1; meetings of all pairs of lines one from A and
the other from B at distinct points of intersection and they all have degree 2. Thus
the code of combination is (A1, Ag, ..., Aary4atys OF ity 52 1 |fi1, iy ey fLp, 4Py ))-

]

We call a combination of A and B in Proposition a simple combination
of A and B.

Example 4.13. Let A be a picture corresponding to the code ((3,25/2,13)) and B
a picture corresponding to the code ((23|13)). By Proposition , we can make a
simple combination of A and B as in Figure @ and the code of the combination

of A and B is ((3,29,21%]2,15)) = ((3,21]2,1°)).

Figure 4.3: A basic combination of A and B
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Proposition 4.14. Let A be a picture corresponding to the code ({(A1, Aa, ..., Ay | 141,
2 -y fbpy)) and B a picture corresponding to the code ((Ny, Ay, ..., Ny, |11, ty, -, ip,)) -
Let pj, a point in A with degree \j, and L a certain line in a parallel family fam,

in B.

(1) Let Lo be a line in A and famy a parallel family containing Lg. Suppose
every line in famy does not contain p;,. Then we can combine A and B so
that L passes through pj,, no point on L lying on pj,, no line in one picture

passes points of the other except for passing pj, of L, and

a. for the case that every line in famy, contains at most one multiple point,
the lines in famy and fam; are parallel but no other pair of lines from

A and B are parallel, so the code of combination is

<o~ PSP et e
<<)\17)\27"'7)\M1+M272ZZ:1MZ]:1M7 HH JOl/’Ll’MQ?"'?/'LP1+P2*1>>7

where
1. \;’s are nonincreasing list sorted from A, g €412, ..., Mi\{jo},
Ni's, j €4{1,2,..., My}, and \j, + 1,
2. [i;’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., Pi}\{k},
Wys, j € {12 PON{I}, and p + )
b. no pair of lines from A and B are parallel, so the code of combination
18
o)\ 3 S s 2 =N | 7 Y
<<)‘17 )‘2: ) >‘M1+M27 25=1 j=tra oo |:u15 M2,y ey uP1+P2>>7
where
1. \’s are nonincreasing list sorted from \,’s, ¢ € {1,2, ..., My }\{jo},
and X;’s, j € {1,2,..., My}, and Aj, + 1,
2. [u’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., P}, and

wi's, g €{1,2,..., P}

2) Let L;, be a line in a parallel family famy in A passing p;,. Suppose that
jo o
every line in fam; contains at most one multiple point. Then we can combine

A and B so that L passes through pj, and coincides with L;,, no point on L

Jo»
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lying on point on Lj,, no line in one picture passes points of the other except
for coincidence of L;, and L, and no pair of lines from A and B are parallel

except for the lines in famy and fam,, so the code of combination is

P P P P
221:11 Hi 2]21 N;_Zizll Ni_2j21 N;' — KR it gy

<<:\17‘“75‘M1+M2a |ﬂ17"'7ﬂP1+P2—1>>7

where

1. 5\, 's are nonincreasing list sorted from \;’s, ¢ € {1,2,..., My}, and )\;. ’s,
je{1,2,..., M},

2. fi;’s are nonincreasing list sorted from pig’s, ¢ € {1,2,..., PLY\{K'}, 11} s,
jeA{L,2,...,BI\{l}, and e + pj — 1.

Proof.

(1)a. Frist, we perturb the lines in famy to have their slope not equal to any
segment formed by p;, and each point in A by using Lemma . Then we rotate
B so that L parallel to Ly and then translate B by the vector from L to p;,. We
have that L passes only point p;,. There may be some points on L lying on pj,
or lying on some lines in A so we can avoid this by translating B in the direction
parallel to L. There may be some lines in fam,; coinciding with some lines in famy
so we can avoid this by directional scaling B using L as a scaling axis as Figure
@(ii)—(iii). Then we use a shear map with fixing L to map B so that no lines from
A excluding famy and B excluding fam; are parallel and no line in one picture
passes points of the other except for passing p;, of L as Figure @(iii)—(iv). Thus
we get the desired combination.

The code of this combination is calculated similarly to the code in Lemma
but it has a little bit differences. Since the lines in fam; are parallel to the lines
in famy, the number of total parallel families decreases 1 and no meeting of each
pair from them. Since L passes pj,, the degree of p;, increases 1 and the meetings
between L and the lines in A containing p;, occur at a point p;,. Hence there are
new Zf:ll Hi Zfil Wy — prpy — Aj, meetings of all pairs of lines one from A and the
other from B at new distinct points of intersection and they all have degree 2. So

we get the code as in (1)a.
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Figure 4.4: A combination of (1)a.

(1)b. We rotate B so that L is not parallel to any segment in A. Similar to (1)a,
we can translate B so that L passes pj, and no point on L lies on pj, or lies on the
lines in A. Then we use a shear map with fixing L to map B so that no lines from
A and B are parallel and no line in one picture passes points of the other except
for passing p;, of L. Thus we get the desired combination.

The code of this combination is calculated similarly to the code in Lemma
but it has a little bit differences. Since L passes pj,, the degree of p;, increases 1
and the meetings between L and the lines in A containing p;, occur at a point pj,.
Hence there are new Zf:ll L Z;Dil s — Aj, meetings of all pairs of lines one from
A and the other from B at new distinct points of intersection and they all have

degree 2. So we get the code as in (1)b.
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(2) Apply the process in (1)a using L;, and famy instead of Ly and famy
respectively without perturbing the lines in fam, at the beginning and we can
not avoid passing all points on Lj, of L and passing all points on L of L;,. We get

the desired combination as Figure @

Figure 4.5: A combination of (2)

The code of this combination is calculated similarly to the code in (1)a but it
has a little bit differences. Since the lines in fam,; are parallel to the lines in famy.
and L;, coincides with L, the number of total parallel families decreases 1 and the
paralell family containing L has 4 7 — 1 members with no meeting of each pair
from them. There are 221 Wi — pgr meetings between L and each line in A not
parallel to L occur at each point on Lj; and also there are Zfil p; — pj meetings
between L, and each line in B not parallel to Lj, occur at each point on L. Thus
there are new Y10 iy 12 — (3502 pa — pur) — (32524 ) — pf) — pij e meetings
of all pairs of lines one from A and the other from B at new distinct points of
intersection and they all have degree 2. Since L coincides with L;,, the degree of

each point lying on L and Lj, is still the same. So we get the code as in (2). [
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Proposition 4.15. Let A be a picture corresponding to the code ({(A1, Aa, ..., Ay | 141,
2 -y fbpy)) and B a picture corresponding to the code ((Ny, Ay, ..., Ny, |11, ty, -, ip,)) -
Let pj, a point in A with degree \;, p;.(,) a point in B with degree )\;.6, and L a

certain line in a parallel family fam; passing p;.() in B.

(1) Let Lo be a line in A and famy a parallel family containing Ly. Suppose
every line in famy does not contain p,,. Then we can combine A and B so
that p;(,) lies on pj,, no line in one picture passes points of the other except

for coincidence of p;, and p;/ , and
0

a. for the case that every line in famy contains at most one multiple point,
the lines in famy and fam; are parallel but no other pair of lines from

A and B are parallel, so the code of combination is

P P.
27;:11 i Zji1 /J;'_/Jk.“‘;_

-~ o~ ~ XigANy 1~ . ~
<<>\17>\27'-'7)\M1+M2*172 0 JO‘/’L17/J’27"'JNP1+P2*1>>7

where
1. \;’s are nonincreasing list sorted from Ags, g€ 41,2, ..., Mi\{jo},
Ny's, J€41,2, ., Mo \{Jo}, and Aj, + )\;’6’
2. [i;’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., Pi}\{k},
;s j €{1,2, ..., BP\{l}, and py + g,

b. no pair of lines from A and B are parallel, so the code of combination
18

P P.
21:11 i 2321 'U’;'fAjo X

<<5‘17 5‘27 ceeyeey 5‘]\/[1-i-1\/[2—17 2 7 ’ﬁla [LQa X3 [LP1+P2>>7

where

1. \;’s are nonincreasing list sorted from Ag’s, g € {1,2, ..., Mif\{Jjo},
Ni's, j € {1,200, MoR\{jo}, and Xjy + N,

2. [u;’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., P}, and

wi's, j €4{1,2,..., Pa}.

(2) Let Lj, be a line in a parallel family famy in A passing pj,. Suppose

that every line in fam; contains at most one multiple point. Then we can
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combine A and B so that p;.[,) lies on pj, and L coincides with Lj,, no point
on L lying on point on Lj, except for coincidence of pj, and pgé, no line in
one picture passes points of the other except for coincidence of Lj, and L,
and no pair of lines from A and B are parallel except for the lines in famy,

and famy, so the code of combination is

~ ~ P P P P
<<)\1, ey )\M1+M2717 221:11 Hi Z]‘il “;_Ei:l1 #i_zjil #;_#2ﬂk’+ﬂi+#k/ ’/117 ey ,&P1+P271>>7

where

1. 5\1 ’s are nonincreasing list sorted from \,’s, ¢ € {1,2,.... M1 }\{Jjo}, )‘;‘ s,
Je{L,2,.... Ma}\{jo}, and Xj, + )‘;‘6’

2. [i;’s are nonincreasing list sorted from u,’s, ¢ € {1,2, ..., PL}\{k'}, M;' ’s,

J € {12 PN{IY, and o + i — 1.

Proof.

The combinations in (1)a, (1)b, and (2) have the same process as the combi-
nation in Proposition (1)a, (1)b, and (2) respectively but they have the same
little bit differences. After rotating B, we translate B by the vector from p;.(,) to pj,
so we have that p;'g] lies on pj,, and to avoid coincidence of points on L and lines in
A, we cannot translate B in direction parallel to L so we directional scale B using
a line passing p;.6 orthogonal to L as a scaling axis instead.

The codes of the combinations in (1)a and (1)b are similar to the codes of
the combination in Proposition (1)a and (1)b respectively but they have the
same little bit differences. Since pj, lies on p;(,), they are counted to be one point
with degree \j, + )\;6 and the meetings between the lines containing p;, and the
lines containing p;.[,) occur at a point p,,. Hence we get the codes as in (1)a and
(1)b. The code of the combination in (2) is similar to the codes of the combination
in Proposition (2) but pj, and p;.(,) are counted to be one point with degree
Ao + )\;.6 — 1. Hence we get the codes as in (2). O

Proposition 4.16. Let A be a picture corresponding to the code ({(A1, Aa, ..., Ay | 141,
W2y -y fipy ) and p, and p, points in A with degree A\, and X\, respectively such that
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no any other point in A is collinear with p, and py. Let B be a picture correspond-
ing to the code ((N|, Ny, ..., Nip, |1], th, ..o tp,)) and having a line L containing no
multiple point. Let famy and famy; be the parallel families belonging to the lines

in A parallel to segment p,py and the lines in B parallel to L respectively.

(1) Suppose there is no line in A passing through p, and p,. Then we can
combine A and B so that L passes through p, and py,, no point on L lying on
Pa OT Py, no line in one picture passes points of the other except for passing

Pa and py of L, and

a. the lines in famy and the lines in fam; are parallel but no other pair

of lines from A and B are parallel, so the code of combination is

N Y 3 Py Py / /
P S i~ et Ne) | 4 .
(()\1,/\2,...,>\M1+M2,22271“22171“J Hity = (Xa b)|u1,u2,...,up1+p2_1>),

where
1. \;’s are nonincreasing list sorted from As, g e {1,2,...., Mi}\{a,b},
Ni's, €412, My}, and Ay + 1, Ay + 1,
2. [i;’s are nonincreasing list sorted from u,’s, ¢ € {1,2, ..., PL}\{k},
wi's, 3 € 41,2, .., BRY\{1}, and py + gy,

b. in the case that every line in famy contains at most one multiple point,
no pair of lines from A and B are parallel, so the code of combination

18
- o~ ~ Py P2 - - ~
<</\1> )\27 ERRS) )‘M1+M2a 221':1 i Zj:l Hi ()\aJr)\b)l,ulv K2y .-y HJP1+P2>>’

where

1. \;’s are nonincreasing list sorted from As, qe{L1,2,...., Mi}\{a, b},
Ni's, j €41,2,., My}, and Ay + 1, Ay + 1,

2. [u;’s are nonincreasing list sorted from u,’s, ¢ € {1,2,..., P}, /L} ’s,

je{l,2,..., P},

(2) Suppose there is a line Ly in A passing through p, and p,. Then we can
combine A and B so that L passes through p, and py,, no point on L lying on
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Pa OT Dy, no line in one picture passes points of the other except for passing
Pa and py of L and for passing points on L of Ly, and the lines in famy and
the lines in fam; are parallel but no other pair of lines from A and B are

parallel, so the code of combination is

P P. P P
221:11 Hi 2]21 N;‘*Zizll urzjil N;' *N;Nk/ it

(s oo Aty i1y ooy i+ P—1)),

where

1. \;’s are nonincreasing list sorted from Ag’s, g €{1,2,..., My}, and N},
je{1,2,..., M},

2. [i;’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., PLY\{K'}, s,
Je{L1,2,..., BI\{l}, and py + p; — 1.

Proof.

(1)a. We rotate B so that L parallel to segment p,p, and then translate B by
the vector from L to p,. There may be some point on L lying on p, or p, so we
translate B in direction parallel to L so that every point on L does not lie on p,
or p, or lying on some lines in A so we can avoid this by translating B in direction
parallel to L. There may be some lines in fam,; coinciding with some lines in famy
so we can avoid this by directional scaling B using L as a scaling axis as Figure
@(i)—(ii). Then we use a shear map with fixing L to map B so that no lines from
A excluding famy and B excluding fam; are parallel and no line in one picture
passes points of the other except for passing p, and p, of L as Figure @(ii)—(iii).
Thus we get the desired combination.

(1)b. A combination in (1)b is similar to the combination in a. but it has a
little bit difference. Note that every line in fam, contains at most one multiple
point, so by Lemma , we can perturb the lines in fam; to be not parallel to
any line in fam,; in B. We use this perturbation after rotating B as Figure @(1)

Then we follow the same step of the combination in a. We get a combiation as

Figure @(i)—(ii).
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Figure 4.6: A combination of (1)a.

Figure 4.7: A combination of (1)a.

(2) A combination in (2) has the same process as the combination in Proposition

1.14/(2) with considering p, and p, as pj,.
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The codes of the combinations in (1)a, (1)b, and (2) are similar to the codes of
the combinations in Proposition (1)a, (1)b, and (2) respectively but they have
the same little bit difference. Since L passes both p, and py,, we consider p, and py

in the same way of p;,. Hence we get the codes as in (1)a, (1)b, and (2). O

Proposition 4.17. Let A be a picture corresponding to the code ((A1, Aa, ..., Angy | 141,
f2, ey phpy)) and pg and py points in A with degree A\, and A, respectively such that
no any other point in A is collinear with p, and p,. Let B be a picture corresponding
to the code ((N, Ny, ..., Ny, |1, ty, ooy i) and pr, and py points in B with degree

A and N, respectively such that no any other point in B is collinear with pl, and

/

pl. Let famy and fam,; be the parallel families belonging to the lines in A parallel
to segment p.pp and the parallel families belonging to the lines in B parallel to

segment pLp., respectively.

(1) Suppose there is no line in A passing both p, and p, and there is no line in
B passing both pl, and pl,. Then we can combine A and B so that p., lies on
Pa and pl; lies on py, no line in one picture passes points in the other except

for coinidence of p., and p, and coinidence of pl; and py, and

a. the lines in famy and the lines in famy; are parallel but no other pair

of lines from A and B are parallel, so the code of combination is

g g Py Py / / / /
> i D2 = — (Na AL ) | ~ ~
<<>\17"‘J)‘M1+M2—272 i=1 Hi 22 1 k= (Qa b d)|,u1,...,,up1+p2_1)>,

where
1. N\;’s are nonincreasing list sorted from As, g€ {1,2,...., Mi}\{a, b},
N's, j€{1,2,., Ma}\{c, d}, and Ao + N, Ay + A,
2. [1;’s are nonincreasing list sorted from pu,’s, ¢ € {1,2,..., PL}\{k},
wi’s, € {1,2, ..., PLI\{1}, and e + i,

b. in the case that every line in famy or fam; contain at most one mul-

tiple point, no pair of lines from A and B are parallel, so the code of

combination is
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g g g Pl P2 ! ’ !
L 2 —(Ag AL+ A ~ ~ ~
<<)\17)\27'--,)\M1+M2—2,22“1 12521 #m (Rae d)’/il,MQ,--~>NP1+P2>>7

where

1. \;’s are nonincreasing list sorted from As, qe{L1,2,...., Mi}\{a,b},
Ni's, § €412, ., Ma\{e,d}, and Ay + AL, Ao + Ay,

2. [i;’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., P}, and

s € {12, ),

(2) Suppose there is a line Ly in B passing through p.. and pl, but there is no
line in A passing both p, and p,. Then we can combine A and B so that p,
lies on p, and pl; lies on py, no line in one picture passes points in the other

except for coinidence of pl. and p, and coinidence of p; and py, and

a. the lines in famy and the lines in famy are parallel but no other pair

of lines from A and B are parallel, so the code of combination is

-~ ~ Py . Py ’r_ ’_ ’ AT ~
<<>\17 sy )\M1+M2—27 22i:1 Hi Zj:l Hi Rkl (Rade Ao a) |,LL1, sty MP1+P2—1>>7

where
1. \;’s are nonincreasing list sorted from As, g e{L1,2,..., M }\{a, b},
Nis, § €412, Maf\{e,d}, and Ay + AL, Ao + A,
2. [i;’s are nonincreasing list sorted from u,’s, ¢ € {1,2,..., PL}\{k},
wi's, j € 41,2, .., BRY\{1}, and py + 1,

b. in the case that every line in famy contain at most one multiple point,
no pair of lines from A and B are parallel, so the code of combination

18
Mox X oS i 52 = NN 7 o
<< 1y N2y ceey AM1+Mo—2 ’Ml)“??"'?,uP1+P2>>7

where

1. \;’s are nonincreasing list sorted from As, g€ {1,2,.... Mi}\{a,b},
Np's, j€{1,2, . Mai\{c, d}, and Ao + N, Ay + A,

2. [i;’s are nonincreasing list sorted from u,’s, ¢ € {1,2,..., P}, and

s, € (L2 Py},
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(8) Suppose there is a line Ly in A passing through p, and p, and there is a
line Lj, in B passing through p.. and pl,. Then we can combine A and B so
that pl, lies on p, and pl; lies on py, no line in one picture passes points in the
other except for coinidence of pl. and p, and coinidence of pl; and py, and the
lines in famy and the lines in fam; are parallel but no other pair of lines

from A and B are parallel, so the code of combination is

~ ~ P P. P P.
<<)‘17 ) )\M1+M2—27 221:11 e Zjil ug_zi:ll M_Zjil ,ll;- THipn b |/:L17 a3 ﬂP1+P2—1>>7

where

1. N\i’s are nonincreasing list sorted from Ag’s, g €{1,2,..., Mi}\{a,b}, \}s,
JeA{L,2,.., Ma\{c,d}, and Ay + A, — 1, Ay + N, — 1,

2. [i;’s are nonincreasing list sorted from p,’s, ¢ € {1,2,..., PLy\{k}, 11}’s,

j € {1727 7P2}\{l}7 and Mk +/'I/E

Proof.

(1)a. We rotate B so that segment p.p/, is parallel to segment pop, and direc-
tional scale B using a line orthogonal to ]Tp& as a scaling axis so that ]Tpil have
the same length as p,p; as Figure @(1) Then we translate B by the vector from
Pl to p,. We have that p/, lies on p, and p/; lies on p;. Note that there is no point
in A and B collinear with p,p, but there may be some lines in fam; coinciding
with some lines in fam; so we can avoid this by directional scaling B using ;sz
as a scaling axis. Then we use a shear map with fixing L to map B so that no
lines from A excluding famy and B excluding fam,; are parallel and no line in one
picture passes points of the other except for coinidence of p/, and p, and coinidence
of p/; and p, as Figure @(ii)—(iii). Thus we get the desired combination.

(1)b. First, we perturb the lines in famy so that they are not parallel to p,pp.
Then we follow the process of the combination in (1)a.

The combinations in (2)a and (3) have the same process as the combination in

(1)a and a combination in (2)b has the same process as the combination in (1)b.
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Figure 4.8: A combination of (1)a.

The codes of the combinations in (1)a and (2)a are similar to the code of the
combination in Proposition (1)a and the codes of the combinations in (1)b and
(2)b are similar to the code of the combination in Proposition (1)b but they all
have the same little bit differences. Since p!, lies on p,, they are counted to be one
point with degree A\, + A, and the meetings between the lines containing p, and the
lines containing p/ occur at a point p,. This is also true for p/; lying on p,. Hence
we get the codes as in (1)a, (1)b, (2)a, and (2)b. A codes of the combinations in
(3) is similar to the code of the combination in Proposition (2) but pa, pp, P.

and p/; are counted to be two points with degree A\, + A, — 1 and A\, + A\, — 1. [

In Proposition , we can see that there is a unique scaling map to scale one
picture along a segment formed by two certain points to have distance between
them equal to distance between the certain two points of the other picture. So we
have to assume that there is no point collinear with these two segments. If not,
the points collinear with those segments may inevitably coincide. Now consider

the following combination of two pictures with each of three non-collinear points
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in one picture lying with each of three non-collinear points in other picture. Let
A and B be pictures, pa,, Pay, Pa; Such non-collinear points points in A, and pj, ,
Dy, Dy, such non-collinear points in B. By Theorem , there is a unique affine
transformation f mapping pj, , pj, and p,, t0 Pa,, Pa, and pa, respectively. This
show that we can combine A and B so that pj, , pj, and pj, lie on pq,, pe, and p,,
respectively but we can not use any other affine map to manipulate the pictures
to have a certain kind of arrangement since there is a unique affine transformation
to map those three points to those other three points except that we could use
perturbations to manipulate them. So a code of this kind of combination can not

be identified without additional information on other parts of the two picture.

Example 4.18. All 924 codes of 17 lines forming 101 points [4] can be divided

into 3 cases as in Figure @

code with code with nontrivial
multiple point(s)  parallel family(s)

Figure 4.9: The number of codes for Fourier’s 17 line problem satisfying the necessary

conditions (@), (@) and (B) are divided into 3 cases

We will show examples for 3 codes from each case which can be directly drawn.
i) The code ((2'°!(8,4,2,1%)) is from the case of nontrivial parallel family with

no multiple point. We may add each line using Proposition @ Then we get a

pattern as Figure .
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Figure 4.10: A patterns corresponding to ((2191(8,4,2,13))

ii) The code ((8, 3% 2%|117)) is from the case of trivial parallel family with mul-
tiple point. We may use 8 lines to form the point with degree 8 using Proposition

@ and use other 9 lines to form 4 points with degree 3 using Lemma @(2) and
Lemma @(3) We then get two pictures as Figure .

S\
N\

Figure 4.11: A patterns corresponding to ((8,3%,2%|117))

Finally, we may make a simple combination of these pictures using Proposition
e

iii) The code ((4,3,2%|8,1%)) is from the case of nontrivial parallel family with
multiple point. Since there are 9 single lines (no other line in its parallel family)
and there are 2 multiple points with degree 4 and 3, we can use 4 and 3 single
lines to form each multiple point. Then use other 10 lines to form a picture with 8

parallel lines, 2 free lines, and no multiple point. We get three pictures as Figure

h1d
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77
f/"'//
Figure 4.12: A patterns corresponding to ({4, 3,2%|8,1%))

Finally, we may make a simple combination of these pictures using Proposition

h1g

4.3 Conclusion and Suggestion

The Sections 4.1 and 4.2 give some tools for directly drawing some patterns.
In particular, some codes have the complicated line and point data which may not
be drawable by using our lemmas and propositions straightforwardly. However,
for some complicated codes, each can be divided into a lot of codes with smaller
data in many possible cases so that they can be drawn using appropriate tools in

this chapter.



CHAPTER V
REALIZATION OF AN ARRANGEMENT BY
ANALYTIC METHOD

In the previous chapter, we have a method to check whether a code is drawable
by directly drawing n lines having relation according to that code. For this section,
one equivalence to that drawing is having a solution to a system of equations with
some additional conditions.

For a code of n lines forming M points with m = 1 and p = 1, it can be easily
drawn by first forming a multiple point by Ay lines, then drawing p; — 1 parallel
lines to one of those A; lines, and finally drawing the remaining lines not passing

any point and not parallel to any line. We call this code a trivial code.

Example 5.1. The system of equations satisfying ((3,2,2|2,1,1)).
We can see that the code ((3,2,2]2,1,1)) is a trivial code so it is drawable as

in Figure El!

Figure 5.1: A picture for the code ((3,2,22,1,1))

To find a relation between each mentioned line and each mentioned point with
each p; = (x;,y;) and each L; is the line y = m;z + ¢, as in Figure El!, we

get the relation between each line and each point on the plane equivalent to an
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equation in the following system

Y1 =m1x1 + 11 Yo = MiTa + C1p0
Y3 =Mix3 + C12 Y1 = MaZ1 + Co1 (5.1)

Yo = MaTo + Co1 Y1 = M3T1 +C31

Y3 = m3x3 + C31

Each equation represents each line passing through each point in the form of
linear equation but here m;, ¢; x, x;,y;’s are all variables.
Since ((3,2,2]2,1,1)) is drawable, the system of equations (@) has solutions

(mh mg, M3, C1,1,C1,2,C21,€C3,1, 1, Y1, T2, Y2, T3, 3/3) corresponding to Figure @

In general, let A = ((A1, Ag, ..., Ang|pia, fi2, o, pp)) be a code of n lines forming
M points. The systems of equations satisfying to A and each equation in the

system is in the form
Yj = MiZj + Ci, (5.2)

where

1.i=1,2,...,P and for each i, k = 1,2, ..., u;,

2.7=1,2,... M,

3. For each j =1,2,..., M, z; and y; appear in \; equations.

We call each equations y = m;x + ¢; , a pseudo-line, denoted by L;;, and we
say that L;; contains p; or p; lies on L;; if there is an equation y; = m;x; + ¢ in
the system of equations.

Suppose that (@) has solution (my, Mg, ..., Mp, C11,C1,25 -, Clpy> €215 s CPpps L1,
Y1y ooy Taa, Yar) = (1, Mo, ooy Mp, €11, €125 ooy CPppy T15 Y1y -, Taa, Yur ). For each @ =
1,2,..., P, for each k = 1,2, ..., ju;, let L, be a line y = m,;x + ¢;,. We consider the
lines L;,’s and their points of intersection. They may not form a picture corre-
sponding to A so we have to observe the conditions for the solution of (@) such

that all y = m;x + ¢;’s can form a picture corresponding to A.



43

Theorem 5.2. Let A be a code of an arrangement of n lines forming M points. Let
S be a system of equation satisfying A. Assume there is a solution of S satisfying

the conditions
C1: my, # my, for each iy, is = 1,2, ..., P with iy # is,

C2: Cig, # Ciky, for each i = 1,2,..., P and for all ky,ky € {1,2,..., p;} with
kl 7é k2)

C3: (xj,,Y5,) # (x)y,Y5,) for each j1,jo =1,2,..., M, and

C4: y; # myxj + ¢y for each j =1,2,..., M and for each pseudo-line Ly, in S
such that Ly, ¢ E; where E; is the set of pseudo-line Ly, in S such that Ly,

containing p;.
Then A is drawable.

Proof. Let A = ({A, Ao, ..., Anr| i, phos -, pop)) and y; = myz;+c’'s equations in S.
Let (ma, ma, ..., Mp, €11, €125 vy CPpup> T1, Y1y ooy Tary Ynr) = (M, Mo, ..., Mp, , €11, C1 2,
ey CPpps T1, Y1, -, Tar, Yur) be a solution of S satisfying C1, C2, C3, and C4. For
each i =1,2,..., P, for each k = 1,2, ..., j1;, let Ly, be a line y = m;x + ci.

First, we will show that the lines L;,’s are n distinct lines forming M points
and have the arrangement satisfying A. By C1 and C2, L;;,’s are n distinct lines
with P parallel families and the i** parallel family consists of y; lines. Thus L;’s
have the arrangement satifying ju1, pa, ..., fip))-

To prove that the arrangement of L;;’s has M points of intersection satisfy-
ing ((A1, Ag, ..., Apr, first we will show that (z;,7;), j = 1,2,..., M are distinct M
points with degree \;, j = 1,2,..., M respectively. Let R be the set of all points
of intersection of L;’s. For each j = 1,2,..., M, let S; be the system of equation
containing all equations L;’s such that Ly (p;) € S. Since p; = (Z;,9;) € Li
for all Ly € S, p; is a solution of S;. Note that Ly’s € S; are \; distinct lines
with distinct slopes and a solution of S; exists. Then S; has a unique solution
which is p;. For the degree of p;, we have that p; has degree at least A; since

it lies on \; lines in S;. Suppose p; has degree greater than );. Then there
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is some line L;, such that Dj € Lin, L, ¢ S’j and not parallel to the lines in
S;. So Li(p;) ¢ S. By C4, p; ¢ Ly, a contradiction. Thus p; has degree
Aj. Hence pi,ps, ..., pm are points of intersection of the lines L;i’s with degree
A1, A9, ...y App respectively and they are all distinct by C3. Next we will show
that R contains only p1,pa, ..., par. Suppose there are points of intersection of
L;’s other than py, Pa, ..., Par, SAY Das41, PM+2, - Parr, M’ > M + 1 having degree
AM1, A2, -, Aa respectively. Then the arrangement of L;;’s is represented by

the code ((A1, A2, ooy Aass Adrgts oo, Aagr |, pi, -y prp)) which is drawable. Thus this
code satisfies (@), we get

S [(3)-1) 3

iygF
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o3
N——
|
<

£16) -1 £ 105 -()-wewe o

Since A satisfies (@),

£ [0)- oo

j=M+

This is impossible because (AZJ) —1>0forall j but M — M" < 0. Thus R =
{(z;,9;)l7 = 1,2, ..., M}. Hence A is drawable. n

In particular, to realize a code, we have to find possible relations between
each line and each point regarding the geometric property of lines on the plane to

eliminate some systems of equations with no solution satisfying the conditions C1,
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C2, C3, and C4. We will find the possible relations between each line and each

point using incident matrix.

Definition 5.3. Let A = ((A1, Ag, ..., Anr| a1, fi2, -, pp)) be a code of n lines form-
ing M points. Let D = [d;;] be an n x M matrix. Assume that the first py rows
of D is called the first row family, the next us rows of D is called the second row

family, and so on. D is an incident matrix of A if D satisfies
1. foreachi=1,2,...,nand j =1,2,.... M, d;; is O or 1,

2. for each row family and for each column j = 1,2, ..., M, there is at most

one entry equal to 1.

lth

3. for each row i, = 1,2,...,n such that the i*" row and the row are in

distinct row families, there is a unique j € {1,2,..., M} such that d;; = d;; =
1.

4. for each column j =1,2,..., M, Y dij = ;.

Remark 5.4. Let D = [d;;] be a matrix in Definition @ Let @; be the i*" row
vector of D and ¥ the j* column vector of D. We have that D is an incident

matrix if D satisfies
1. for each 1 = 1,2, ..., n, 4; has each entry equal to 0 or 1,

2. for each i,1 = 1,2,...,n such that the i*" row and the {* row are in the

same row family, u; - u; = 0.

3. for each i, = 1,2, ..., n such that the i*" row and the I'" row are in distinct

row families, u; - u; = 1.
4. for each j =1,2,...., M, v; - [1,1,...,1]T = \;.
Remark 5.5.

1. If a code does not have an incident matrix, then it is not realizable.
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2. A code can have many different incident matrices up to reordering of the
lines in the same parallel family, reordering of the parallel family with the

same size, and reordering of the points with the same degree.

3. For a code A that is not assumed to satisfying the necessary conditions
(@), (@), and (@), if A have an incident matrix then A satisfies such
necessary conditions. This can be proved directly by the definition of an

incident matrix.

Example 5.6. An incident matrix of ((3,3,3,3,2(2,2,1,1)).
We let Ly and Ly be lines in the first parallel family, L3 and L, lines in the
second parallel family, and L; and Lg single lines each in the last two parallel

families. We found that

is an incident matrix of ((3,3,3,3,2(2,2,1, 1)).

Let D be the incident matrix shown in Example @ Then D represents rela-
tions between each line and each point. For each entry dj; such that dj; = 1, we
have a pseudo-line L;; containg p; or y; = m,;x; + ¢; ,, where ¢ is the parallel family

number of L;, k is the line number of L; in its paralell family. Thus the system of

equations
Y1 =m1T1 +C1 Yo =My + C11 Y3 = M1T3 + C12
Ys = M1Ty + C12 Y1 = MaT1 + Co1 Y4 = MaZg + Co1
Y2 = Moy + Co2 Ys = MaZ3 + Ca2 Y1 = m3xy + C31
Y3 = m3x3 + C31 Ys = M3T5 + C31 Yo = MyXo + C41
Y4 = Myl + C41 Ys = MyT5 + Cq1.

is equivalent to D.
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Definition 5.7. Let A be a code. We said that S is an incident system of

equations if it is equivalent to some incident matrix of A.
Remark 5.8. Let S be an incident system of equations. Then S satisfies

1. for each two pseudo-lines Lk, , Lix, with ki # kg, every p; lying on Lz,

does not lie on L;,, and vice versa, and

2. for each two pseudo-lines Ly, Ly, with ¢ # [, thereis only one j € {1,2,..., M}
such that p; lies on Lz, L.

This follows from the definition of incident matrix.

Next, we will observe the conditions for the solution of an incident system of
equation satisfying a code A that make A drawable.

Theorem @ and will be used for a code with n > 3 and M > 3. On
the other hand, for a code with n < 3 or M < 3, it is drawable by the following
explanation. For a code with n < 3, there are only three different possible drawable
codes, namely (( 1)), (( |2)), and ((2|1,1)). For a code with M = 1, it can be
drawn as a picture with a point degree n. For a code with M = 2, if such two
points lie on distinct lines then those lines will form other points, so the two points
must lie on the same line. Since the other lines passing the two points cannot form
the other points, they can be only two parallel lines each one passing each point,

hence a drawable code with M = 2 can be only ((2,2]2,1)).

Theorem 5.9. Let A be a code. Let S be an incident system of equations satisfying
A withn > 3 and M > 3. Assume that S has a solution satisfying C4. Then A is

drawable.

Proof. Let d = (My,...;Mp,C11, ey CPyup, L1, Y1y -, Tar, Yar) be a solution of the
system of equations S satisfying C4. We will prove that d satisfies C1, C2, and
(3, and then the Theorem @ implies that A is drawable.

To prove that d satisfies C3, suppose that there are 7y, jo € {1,2,..., M} with
J1 # jo such that p;, = (Z;,,9;,) = (ZT,,Yj,) = Pj,- Since S is an incident system
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of equations and j; # ja, every two pseudo-lines cannot contain both p; and
Pj,- Then there is a pseudo-lines L;; for some ¢, k, such that L;, contains pj,
but does not contain p;,. Thus the equation y;, = m;z;, + ¢;) is not in Ej, so
Uj, 7 MiZj, +Cij DUt y;, = yj, = Mm%, + ¢ = mM;T;, +Ci i, a contradiction. Hence
d satisfies C3.

To proof that d satisfies C1, suppose that there are i,ip € {1,2,..., P} with
11 # 1o such that Z)ilk and f}izh are parallel.

If they are the same lines, then for every p;, we have that y; = m;,Z; + ¢,
if and only if §; = m;,T; + Ci, 5. Since S is an incident system of equations and
i1 # g, there is only one j, € {1,2,..., M} such that p,, lies on L;; and L;,. Let
pr wWith r # jo be a point lying on L;,. Then p, does not lie on L;,,. Thus the
equation y, = m;,&,+¢;, p is not in E,. 80 Y 7 My Tp+Ciy p. SINCe Yy = My, T +Ciy g,
Yp = M, Ty + Ciy b, & contradiction.

If they are the distinct lines, then for every p;, we have that if y; = m;, Z;+¢;, ,
then y; # m;,; + ¢, n, and vice versa. Since S is an incident system of equations
and iy # iy, there is only one j, € {1,2,..., M} such that p;, lies on L;,; and L.
Since d is a solution, §;, = 1M, T, + Ciy & and ¥, = My, T4y + Cipp, & contradiction.
Hence d satisfies C1.

To proof that d satisfies C2, let i € {1,2,..., P} such that P > 2 and suppose
that there are ki, ky € {1,2,...,4;} with ky # ko such that ¢, = ¢ g,. Since
S is an incident system of equations and ki # ko, every p; lying on L, does
not lie on Ly, and vice versa. Let pj, be a point such that pj, lies on Ly,.
Then the equation y;, = m;xj, + ¢, is not in Ej, so y;, # miZ;, + Cix, but
Yjo = MyTjy + Ciky = MiTj, + Gy, a contradiction. Hence d satisfies C2.

Since d satisfies C1, C2, C3, and C4, by Theorem @, A is drawable. [

Theorem 5.10. Let S be an incident system of equations satisfying a code A with
n >3 and M > 3. Assume that S has a solution satisfying C1 and C3. Then A

1s drawable.

Proof. Let d = (M, ..., p, €11,y ey CPyup, T1, Y1, - Tar, Yar) be a solution of the
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system of equations S satisfying C1 and C3. We will prove that d satisfies C4 and
then the Theorem @ implies that A is drawable.

Suppose there are L;yy,,p; such that L;, does not contain p; but p; lies on
Liyk,- Since S is an incident system of equations, there are L;, and Li,, both
containing p; where iy # i5. Suppose i; = ig. Then L, and L;, are parallel
since d satisfies C1. Since Z_L,-Oko and Eil r, both contain p;, they are the same line.
Since S is an incident system of equations, there is p, lying on L;, and L,
where s # j. By C3, ps # pj. Then L, and Ly, are distinct lines both containg
two points ps and p; which is impossible. Thus i; # 9. With the same reason,
19 # 19. Note that each pair of Eioko, lel,f}hkz are not parallel since d satisfies
C1. Since S is an incident system of equations, there is r such that p, lies on L;,
and L; ;. We have p; is a point of intersection of [_/z‘lk’l and I_/i2k2, and p, is a
point of intersection of Eioko and Eilkl. Since p; lies on Eioko, p; is also a point of
intersection of L;, and L;,. Note that r # j since Ly, does not contains p;.
By C3, p, # p;. So Lix, and Ly, have two points of intersection at p, and p;
which is impossible. Hence d satisfies C4.

By Theorem @, A is drawable. O

From the above theorem, if there is an incident system of equations for some
code such that the system of equations has solutions satisfying only C1 and C3,
then the code is realizable. For the solution not satisfying C1 or C3, we will suggest

a way to use the implicit function theorem to possibly adjust some variables.

Let S be an incident system of equations satisfying some code. Let E be
the number of equations, V' the number of variables. Then E = Zj\il Aj and
V=2M+P+n.

For the system of equations such that V > E. let F : RV-E)+E 5 RE he g

function

F<w7z) = (fl(wvz)7f2(w7z)7 '”7fE(w7Z>)a

where

1. (w,2) = (wy,wo, .., wy_g, 21, 22, ..., 2) € RY"F x R¥ is some ordering of



the variables m;’s, z;’s, y;’s, ¢; s, and
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2. folw,z) = my,x;, + cir, — yj, = 0, the ¢ th equation of the system of equa-

tions, ¢ = 1,2, ..., E.

Then the Jacobian matrix of F', which is the matrix of the partial derivatives

of F', is

of _Oh A

w1 owy_g 0z

Of2 _Ofp  9f

J=DF = owq owy _g 0z1

Ofe _Ofs  Ofe

L Ow: owy_g 0z

Assume there is (w,z) = (W1, Wy, ..., Wy _g, 21, 22, -,

that F(w,z) = 0, where 0 € R” and assume that

oh

0z1
Ofa

0z

OfE
0z1

(@, 2)

(@, 2)

(@, 2)

of1

0zg
0fs

Ozg

OfE
ozg

(0, 2)

(0, 2)

(@, 2)

oh

ozg

0f2
ozg

9fe
Oz

4 ExV

zp) € RV"E x R¥ such

4 ExXE

is invertible. Then by Theorem , there exists an open set U of RV~¥ con-

taining w, and such that there exists a unique continuously differentiable function

G : U — R¥ such that G(w) = z and F(w,G(w)) = 0 for all w € U, i.e.

Zi = gi(wla "vwva')a L= 1727 7E where G(U)) = (gl(w)792(w>7 7gE'(w))

Hence for a solution (w, ) of the incident system of equations with V' > E that

does not satisfy conditions C1 or C3, assume that (wi,ws, ..., wy_g, 21, 22, ..., Z2E)

is the ordering of m;’s, x;’s, y,’s, ¢;x’s such that some variables making (w, 2) fail

such conditions are of wy,ws,...,wy_g and J,(w, z) is invertible, then there are

many other solutions (w, z) around (w, z). Hence we may specify the variables w

to possibly satisfy C1 and C3.

Next, we will show an example of a simple code realized by an analytic method

using the implicit function theorem.
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Example 5.11. Let A = ((2°]2,12)) be a code for 4 lines forming 5 points.

By finding an incident matrix satifying A, we get an incident system S of equations

Y1 =m1x1 + C11 Yo = M1Ty + C11 Ys = M1Ty + C12
Ys = M1T5 + C12 Y1 = MoZ1 + C21 Y3 = MaZ3 + C21
Y5 = Moks + Co1 Yo = M3Ty + C31 Y3 = m3T3 + Cc31

Y4 = M3Ty + C31.
satisfying A.

_ _ _ 3 _
mg =2, ¢c11 =9, c12 = 3, 21 = 12,

We found a solution m; = I, my = —3, 7
31 = =2, 01 =wy=wx3 =4, 14 =2, 15 =06, y1 =y =y3s =6, y4 = 2, and
ys = 3. This solution fails conditions C3 and C4, and the lines y = m;z + ¢; x’s

form a picture as Figure @ not satisfying A.

Figure 5.2: A picture formed by the lines y = m;x + ¢; 1,’s

Note that V' = 17and E = 10. Let f : RY" — R for d := (my, ma, m3, c11, 12, C21,

17
03,1,64,1,x1,y1,x2,y2,:Bg,yg,x4,y4,x5,y5) e R,

f(d) = (fl(d)’ f2(d)’ >fE(d))>

where

fi(d) = myzy + ey — w, fo(d) = myzy + 11 — yo, f3(d) = muzs + c12 — Ya,
fa(d) = myxs 4 c12 — ¥s, f5(d) = mary + can — y1, fo(d) = moxs + c21 — Y3,
fr(d) = mozs + a1 — v, fs(d) = mazo + c31 — v, fo(d) = mszs + 51 — ys,
fio(d) = maxs + c31 — Ya.
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Let d = (3,-3,2,5,2,12,-2,4,6,4,6,4,6,2,2,6,3). Then f(d) = 0 since d is a
solution of S.

Consider the Jacobian matrix J of f, we get

[ on on on oh ... On oh Oh ... Ooh Oh |
Bmi Oms Oms Beri dcs1 O Oy o1s O
J_ | omi omz Oms Beis Bos1 Or1 Oyl ors s
9fin Ofn Ohw OAO0 . 9HO dfw Ofiw ... Oho O
| Omq oma oms Oci,1 Jdcs,1 ox1 oY1 oxs dys
(2, 0 0 1000 m -1 0 0 0 0 0 0 0 0|
2 00 1000 0 0 m -1 0 0 0 0 0 0
24 00 0100 0 0 0 0 0 0 m -1 0 0
s 0 0 0100 0 0 0 0 0 0 0 0 m -1
o2 00010m -1 0 0 0 0 0 0 0 0
|0 2 000100 0 0 0 m -1 0 0 0 0
0 25 0 0010 0 0 0 0 0 0 0 0 m —1
0 0 22 0001 0 0 mg -1 0 0 0 0 0 0
0 0 243 0001 0 0 0 0 mg -1 0 0 0 0
| 000 240001 0 0 0 0 0 0 mg -1 0 0 |
Thus
(4001000 L -10 0 0 000 0 0]
4001000 0 0L -1 0 000 0 0
20001000 000 0 0 L -1 0 0
60001000 000 0 000 L+ -1
J(J):0400010—g—100000000
0400010 0 00 0 -3 -100 0 0
06000100 000 0 00 0 —% -1
0040001 0 0 210 0200 0 0
0040001 0 000 2 -10 0 0 0
(0020001 0 000 0 02 -1 0 0|

Next, we will find the ordering (wy, ws, ..., wy_g, 21, 22, ..., 2zg) of m;’s, x;’s, y;’s,
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¢;r’s such that J,(w, z) is invertible. We found that a submatrix

10 3 0 0 0 0 0 0 O
10 0 3 0 0 0 0 0 0
00 0 0 0 0 L -1 0 o0
00 0 0 0 0 0 0 1 -1
01 -20 0 0 0 0 0 0
01 0 0 -2 -10 0 0 0
01 0 0 0 0 0 0 -3 -1
00 0 2 0 0 0 0 0 O
00 0 0 2 -10 0 0 O
(00 0 0 0 0 2 -1 0 0 |

of J(d) has the i®" column vector, i = 1,2, ..., E, from the column vectors par-
tial derivatives of f by ci1,c21, %1, %2, T3, Y3, 24, Ys, T5, Y5 respectively at a point
d and it is invertible. Hence we let w = (my, ma, m3,c12,¢31,Y1,%2) and z =

(01,1702,1,$1,$2,$3,y3;$4,y4ax5795)' Then

10 3 0 0 0 0 0 0 0
10 0 ¥ 0 0 0 0 0 O
00 0 0 0 0 -1 0 o0
00 0 0 0 0 0 0 %+ -1
J.(.7) = 01 -30 0 0 0 0 0 0
01 0 0 -2 -10 0 0 0
01 0 0 0 0 0 0 -2 -1
00 0 2 0 0 0 0 0 0
00 0 0 2 -10 0 0 O
(00 0 0 0 0 2 -1 0 0 |

is invertible.
By Theorem , then there exist an open set U of R” containing w, and a unique

continuously differentiable function g : U — R1? such that



o4

1 3.3
S —202,5,-2,6,6) = (5,12,4,4,4,6,2,2
9(47 27 727 76’6) (57 ? Y ) 767 Y 7673)

and for all (mq,ma, m3, c12,¢31,41,92) € U,
f(ml,m%ms; C1,2, 03,1,y1,y2,g(m1,m2,m3,c1,2,c3,1,y1,yg)) =0.

There are €;,6; € R\{0} with e; # € such that (m),my, m3, ¢4, ¢51,y1,95) =
(1,—2,2,2,-2,64€1,6+¢2) € U. Then we get ¢} ; = 5+ fea, ¢hy = 24+Tey — 2Ly,
) =4+ 4de — 62,£E2—4—|— 62,x3—4+261 62,y§:6+461—362,x21:2,
yy =2, vt = 6 + 4€; — 3eq, and y5:3—|—€1——62.

We can observe that m; # mj,, for all iy # iy and (2 ,y} ) # (2},,y),) for all
J1 # J2- That is (my,ma, ms, C1.2, €31, Y1, Y2, C1,1, C2,1, T1, T2, T3, Y3, Ta, Y4, Ts, Ys) =
(4,-3,2,3,-2,6+€,6+ 6,5+ 16,24+ Te; — Zles, d+4e; — Lep, 4+ 2eg, 4+ 261 —

%@,6 + 4deq — 362,2,2,6 + 461 — 3€9,3 + €1 — %62) is another solution of S and it
satisfies C1 and C3. So the code A is drawable.

One example of the other solution of S satisfying all condition C1, C2, C3, and

C4 is that when we choose m; = %, My = —§ , M3 =2, 1o = %, c31=—2,y1 =38,
and = without id U, t e =12 = B = 10
Yo = 2 without considering we get c1p = 5, 01 = 12, 11 = 3, 12 = 3,

x3=4,y3 = 6, Ty =2,ys =2, x5 =6, and y5 = 3. So (my, Mg, M3, 12,31, Y1, Y2,
01,1702,17$17172,$3793;174ay47$5ays) - (4117 3 27 2327 2712 _27 3787 1367 23674 6 2 2 6 3)

is a solution of S, and the lines y = m;x + ¢; ;’s now form a picture as in Figure

@ satisfying A.

Figure 5.3: A picture formed by the lines y = m;x + ¢; s



5}

Unfortunately, the implicit function theorem is valid for some system of equa-
tions with some solution d since it has many assumptions. By the other ways, we
may find the existence of solutions of the system satisfying all conditions. This is

interesting to be investigated further more.
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