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CHAPTER 1 

INTRODUCTION 

This chapter consists of four main parts. The first part provides the motivation and 

significance underlying the present study. Then, results from an extensive review of 

historical background and advances in the modeling and analysis of fracture problems 

are reported. Next, the statement of a research problem, specific objectives, scope of 

work, and methodology and research procedure are briefly summarized. Finally, 

resulting outcomes and contribution of the present study are addressed. 

1.1 MOTIVATION AND SIGNIFICANCE 

The classical theory of linear fracture mechanics has been successfully employed, for 

the past several decades, in the modeling, analysis, and assessment of fracture-induced 

failure mechanisms of components and parts made of various types of materials such 

as elastic solids (e.g., William, 1957; Paris and Erdogan, 1960; Irwin, 1961; Foreman 

et al., 1967; Nakamura and Park,1990) and fully coupled-field media (e.g., Pak, 1992; 

Park and Sun, 1995; Zhang  et al., 2002; Gao et al., 2003; Ma et al., 2007; Ma et al., 

2015). The majority of those existing works is based primarily on the well-known 

assumptions that the inelastic deformation and nonlinear processes induced due to the 

presence of discontinuity are only pertained in a sufficiently small region surrounding 

the fracture front and are negligible (e.g., small scale yielding concept) and the fracture-

related responses (e.g., crack growth criteria and the direction of crack advances) are 

governed or dictated only by a dominant, singular part of the near-front stress and 

generalized stress fields. It is evident from the primitive work of William (1957) for 

linear elastic media and its analogous extension for coupled-field materials that such 

the singular term contained in the near-front field expansion can be completely 

described by a single set of parameters known as the intensity factors. The knowledge 

of this fracture data is, therefore, essential and, at the same time, sufficient for 

establishing single-parameter-based fracture models relying only upon the singular 

field. However, various past evidences have indicated that integrating the nonsingular 

part of the near-front field into those models can further enhance or improve their 
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capability to simulate fracture phenomena (e.g., Ayatollahi et al., 2002; Sedinghiani et 

al., 2011; Cheng et al., 2012; Cheng et al., 2012). Within the context of linear elasticity, 

a nonsingular part of stress existing along the crack front, commonly known as the T-

stress, has been found to significantly affect the hydrostatic tri-axiality ahead of the 

crack front, crack growth resistance curve, direction and stability of crack advances, 

and size and shape of the inelastic region surrounding the crack front (e.g., Cotterell, 

1966; Williams and Ewing, 1972; Rice, 1974; Du and Hancock, 1991; Ayatollahi et al., 

1998; Smith et al., 2001; Tvergaard, 2008). In addition, Larsson and Carlsson (1973) 

found that the conventional boundary layer technique integrating only the stress 

intensity factors was not a suitable approach for modeling real crack problems. 

However, once enhanced by adding the information of the T-stress, the modified 

boundary layer approach can provide more accurate prediction of the stress intensity 

factor at the first plastic yielding stage for various types of specimens. Similar to the 

elastic case, the important role of nonsingular terms in simulations of cracks in coupled-

field media such as piezoelectric materials has also been investigated and confirmed 

(e.g., Zhu and Yang, 1999; Hao and Biao, 2004; Li and Lee, 2004; Viola et al., 2008; 

Liu et al., 2012). Two-parameter-based fracture models, integrating both the singular 

and nonsingular data along the crack front, have been found promising and increasingly 

employed by many investigators, in the past three decades, to study cracks in various 

aspects.  

To facilitate the use of two-parameter-based fracture models in fracture 

simulations, the analysis technique capable of extracting the information of both 

intensity factors and the nonsingular terms along the crack front must be supplied. For 

instance, in the simulation of crack advances in an elastic medium, both the stress 

intensity factors and T-stress must be accurately calculated at any analysis step and then 

used as the basic information in the growth law to propagate the crack. To achieve such 

a crucial task, a powerful and robust solution procedure must be employed to handle 

not only the inherent complexity associated with the problem at the initial stage but also 

the general crack geometry resulting from the crack evolution. On the basis of an 

extensive literature survey, the computational technology for determining the intensity 

factors of cracks in both single and coupled-field media has been well established and 
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various existing techniques have been found to have the vast capabilities to treat 

problems in a general context (e.g., Xu and Ortiz, 1993; Li et al., 1998; Xu, 2000; Haas 

and Kuhn, 2002; Frangi et al., 2002; Sanz et al., 2005; Qin et al., 2007; Rungamornrat 

and Mear, 2008b,c; Phongtinnaboot et al., 2011; Rungamornrat at al., 2015). Unlike 

the intensity factors, existing solution procedures for calculating the nonsingular terms 

such as the T-stress and generalized T-stress are relatively few and most of them are of 

limited capabilities. While several analytical schemes were proposed to establish 

explicit solutions of the T-stress and generalized T-stress along the crack front (e.g., 

Wang, 2004; Hao and Biao, 2004; Li and Lee, 2004; Kirilyuk and Levchuk, 2007; 

Zhong and Li, 2008; Viola et al., 2008; Liu et al., 2012; Rungamornrat and Pinitpanich, 

2016; Rungamornrat et al., 2018), such derived solutions are of limited uses due mainly 

to relatively simple settings and assumptions considered when the problems were 

formulated (e.g., geometries of cracks and bodies, material properties, loading 

conditions, crack-face conditions, etc.). To circumvent the limitation of analytical 

procedures, computational packages have been continuously proposed for determining 

the nonsingular fracture data (e.g., Nakamura and Parks, 1992; Henry and Luxmoore, 

1995; Sladek et al., 1997; Zhu and Yang, 1999; Fett et al., 2006; Tran, 2010; 

Subsathapol et al., 2014; Limwibul et al., 2016). Those offered analysis packages 

commonly consist of two main routines, one associated with the analysis of field 

equations to obtain primary unknowns and the other corresponding to the post-process 

of solved data to attain the nonsingular terms along the crack front. The accuracy and 

computational efficiency of each technique depends primarily on those two routines.  

A group of techniques based upon boundary integral equations has been proved 

efficient for fracture modeling and analysis since the first routine involves field 

equations of reduced spatial dimensions and primary unknowns are associated with 

quantities on the boundary of a body and crack surfaces (e.g., Cruse, 1988; Xu and 

Ortiz, 1993; Li et al., 1998; Xu, 2000; Rungamornrat and Mear, 2008b). Such positive 

feature renders the boundary integral equation methods (BIEMs) computationally 

attractive when employed to handle evolving cracks. It is important to remark, however, 

that due to the suppression of primary unknowns to those on the boundary and cracks, 

field quantities within the domain must be obtained later via the post-process algorithm. 
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In addition, the extraction of the fracture data such as the intensity factors and 

nonsingular terms directly from the interior near-front field is non-trivial in terms of 

computational efficiency and accuracy. For instance, the post-process for the T-stress 

using the path independent integrals (e.g., Sladek et al., 1997; Shah et al., 2005) requires 

the nontrivial evaluation of interior fields along the computational path. To maintain 

the benefit of BIEMs, alternative but efficient post-process schemes requiring only 

information on the crack surface have been sought. Recently, a technique based upon 

applying the additional displacement integral equation for cracks to determine the sum 

of the crack-face displacement and using such information to directly post-process for 

the T-stress was proposed by Tran (2010) and Rungamornrat et al. (preparation for 

publication) for cracks in two- and three-dimensional media, respectively. Such 

technique was also extended to treat cracks in an elastic half-space (Pham et al., 2015) 

and cracks in couple-field media (Subsathapol et al., 2014; Limwibul et al., 2016). 

While this proposed technique already resolved the post-process issue regarding to the 

use of interior near-front field, the explicit formula used to extract the information of 

the T-stress and generalized T-stress still involves derivatives of the sum of the crack-

face displacement. It is commonly known from the finite element approximation theory 

that the post-process for derivatives of approximate solutions can further degrade their 

accuracy. No evidence, to the best knowledge of the investigator, has been shown in 

the literature to support further enhancement of such technique. This gap of knowledge 

is considered significant and it, as a result, provides the underlying motivation of the 

present study.           

1.2  REVIEW OF RELEVANT LITERATURE 

In this section, the summary of relevant literatures involving the calculation of 

nonsingular terms of cracks (e.g., T-stress and generalized T-stress) in both single and 

couple-field media (e.g., elastic, piezoelectric, and piezoelectromagnetic solids) is 

reported. In addition to that indicated in the previous section, technical details of each 

previous work are elaborated as necessary in order to adequately provide the historical 

background and the current state of the art of this specific discipline. Results from the 

extensive review are organized into two parts, one associated with analytical techniques 
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and the development of explicit solutions and the other corresponding to the 

implementation of computational procedures and post-process algorithms. 

Various analytical techniques were proposed in the literature and successfully 

utilized to derive explicit solutions of the T-stress for cracks in elastic media (e.g., 

Wang, 2004; Kirilyuk and Levchuk, 2007; Schutte and Molla-Abbasi, 2007; Wang and 

Chen, 2014; Hua et al., 2015; Rungamornrat and Pinitpanich, 2016) and the generalized 

T-stress for cracks in piezoelectric media (e.g., Hao and Biao, 2004; Li and Lee, 2004; 

Zhong and Li, 2008; Viola et al., 2008; Liu et al., 2012; Rungamornrat et al., 2018). In 

those studies, Stroh formalism, solution representations (e.g., real and complex 

potential theories) and methods based upon integral transforms (e.g., Hankel integral 

transform and Fourier integral transform) were mainly employed to obtain basic field 

quantities and such information in the vicinity of the crack front is then used to obtain 

the nonsingular fracture data via the post-process algorithm such as the stress difference 

method (e.g., Wang, 2004) and the formula resulting from the asymptotic near-front 

expansion (e.g., Rungamornrat and Pinitpanich, 2016; Rungamornrat et al., 2018). 

Derived explicit solutions for simple cracks under certain fundamental loading 

conditions (e.g., concentrated forces and charges) were further utilized as Green’s 

function to establish post-process formula for computing the T-stress and generalized 

T-stress of the same crack under general loading conditions (e.g., Fett, 1997; Schutte 

and Molla-Abbasi, 2007; Rungamornrat and Pinitpanich, 2016; Rungamornrat et al., 

2018). Other explicit expressions were also proposed based upon the known solutions 

for certain fundamental cases together with the weight-function technique (e.g., Hua et 

al., 2015). While a set of explicit solutions/expressions/formula for nonsingular terms 

was derived, they are clearly of limited uses in the fracture modeling due primarily to 

the relatively simple and very specific settings considered in the problem formulation. 

The capability to handling general crack geometry, loading conditions and material 

properties is an essential issue especially when simulations of crack advances are of 

interest.  

Advance in the development of numerical procedures for the analysis of 

nonsingular terms of cracks in various types of materials has been continuously grown 

in the past three decades. The key objective of most of existing studies was to seek a 
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technique that yields sufficiently accurate results and, at the same time, is 

computationally robust and user friendly. Methods based upon the finite element 

approximation have been widely utilized as the basic tool for performing the analysis 

of basic fields (e.g., displacements and stresses) within the cracked media. Such finite 

element solutions were then post-processed for the T-stress data along the crack front 

by various investigators via Eshelby’s method, interaction integrals and path 

independent contour integrals based on Betti-Rayleigh reciprocal theorem (e.g., 

Cardew et al., 1985; Kfouri, 1986; Nakamura and Parks, 1992; Sladek et al., 1997; 

Zhao et al., 2001; Chen et al., 2001; Kim and Paulino, 2003; Wang, 2003; Wang and 

Bell, 2004). Other approaches such as the method of Green’s function, reciprocal 

integrals and the weight function scheme (e.g., Sham, 1991; Wang, 2002a; Wang, 

2002b; Fett and Rizzi, 2006; Lewis and Wang, 2008) and the method of superposition 

(e.g. Wang and Bell, 2004; Molla-Abbasi and Schutte, 2008; Meshii et al., 2010) were 

also utilized along with the finite element results to extract the T-stress solutions for 

various cases. While the FE-based techniques have circumvented the limited capability 

of analytical and semi-analytical schemes, the analysis of field problems still requires 

the discretization of solution over the whole domain and this poses serious issue on 

computational efficiency and simplicity when used to handle crack evolution. In 

addition, standard finite element procedure generally requires relatively very fine mesh 

in the region surrounding the cracks in order to achieve the high accuracy of 

approximate solutions especially when the fracture data along the crack front is of 

primary interest (e.g., Ayhan et al., 2006). It is remarked also that the post-process 

algorithm mentioned above does not directly involve the information of near-front 

fields and still requires nontrivial evaluation of involved path integrals. The techniques, 

which directly exercise the near-front solutions such as a boundary-layer method based 

on the subtraction of tangential stress components (e.g., Lasson and Carlsson, 1973; 

Leevers and Radon, 1982) and a method using the near-front crack-face displacement 

(e.g. Al-Ani and Hancock, 1991[1]; Ayatollahi et al., 1998) were also recognized. The 

performance of such two methods when applied to three-dimensional crack problems 

was investigated by Henry and Luxmoore (1995). Recently, a group of techniques 

based upon scaled boundary finite element methods which combine both analytical 
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feature and the finite element approximation was proposed for the analysis of T-stress 

of cracks in two-dimensional elastic media (e.g., Saputra et al., 2015; Chowdhury et 

al., 2015). While such numerical procedures reduce one spatial dimension in the 

discretization and provide a direct mean to calculate the fracture data at the crack tip, 

their computational efficiency is still questionable when dealing with non-planar and 

multiple cracks and large scale problems. 

Alternative numerical techniques based upon boundary integral equations have 

been extensively established for solving linear boundary value problems in mechanics 

(e.g., Liggett and Liu, 1983; Cruse, 1988; Brebbia and Dominguez, 1989) and they have 

been proved computationally efficient for linear fracture analysis (e.g., Gu and Yew, 

1988; Xu and Ortiz, 1993; Li et al., 1998; Pan and Yuan, 2000; Xu, 2000; Frangi et al., 

2002; Ariza and Dominguez, 2004; Rungamornrat and Mear, 2008b,c; Phongtinnaboot 

et al., 2011; Rungamornrat et al., 2015). One of the positive features of those methods 

is that the key governing equations can be formulated in terms of unknowns on the 

boundary and the crack surface, thus rendering the reduction of one spatial dimension 

in the solution discretization procedure. The less number of degrees of freedom is 

generally required, in comparison with the domain-based schemes such as the finite 

element method, especially when an unbounded medium is to be treated. In addition, 

such low dimension of discretization also renders the techniques in this group suitable 

for simulating crack evolutions. Within the context of linear fracture analysis, studies 

related to the development and use of boundary integral equation methods in the 

analysis of nonsingular fracture data along the crack front are significantly less in 

comparison with those for determining the intensity factors (e.g., Li et al., 1998; Xu, 

2000; Frangi et al., 2002; Rungamornrat and Mear, 2008b,c; Phongtinnaboot et al., 

2011; Rungamornrat et al., 2015). Results from a careful review of relevant research 

articles are summarized as follows. Sladek et al. (1997) proposed a conventional 

boundary element method together with the nonsingular integral formula for computing 

the T-stress of cracks in a two-dimensional, isotropic elastic finite media. In their work, 

the post-process algorithm still requires the knowledge of the field along a selected path 

and such data at any point must be obtained before applying the contour integral. 

Sutradhar and Paulino (2004) developed a hypersingular symmetric Galerkin boundary 
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element method (SGBEM) to solve cracks in two-dimensional, isotropic, linear elastic 

infinite and finite bodies. Similar to the work of Sladek et al. (1997), the same type of 

path independent integral was employed to post-process for the T-stress. Later, Yu et 

al. (2006) investigated crack emanating from a circular hole in a two-dimensional, 

rectangular elastic plate subjected to uniform tension and bending loads. In the analysis, 

the boundary element method was employed to solve for the key unknowns on the 

boundary and crack and the M-contour integral scheme was adopted to obtain the T-

stress at the crack-tip. Again, in their technique, the additional post-process for stresses 

within the body must be carried out before applying the contour integral. To enhance 

the efficiency of the post-process algorithm, Tran (2010) employed the weak-form 

displacement integral equation for cracks in addition to the weak-form traction integral 

equation used in the weakly singular symmetric Galerkin boundary element method 

(SGBEM) to compute the sum of the crack-face displacement. Such additional crack-

face data was then employed to compute the T-stress at the crack tip. The explicit 

formula of the T-stress proposed by Tran (2010) does not require the information of 

interior fields and the evaluation of any integral but still involves the calculation of 

derivatives of the sum of the crack-face displacement. Another approach was 

introduced by Phan (2011) in the analysis of cracks in two-dimensional, elastic infinite 

and finite bodies. In his work, a hypersingular SGBEM was used to solve the boundary 

value problem for the boundary data and the relative crack-face displacement, and a 

novel non-singular boundary integral formula containing only the crack-face 

displacement data was established and used in the post-process for the T-stress. While 

such proposed formula does not require the information of elastic fields within the 

body, the evaluation of all involved integrals over the entire crack can be 

computationally demanding.  

Due to attractive features of the technique proposed by Tran (2010), it was 

further extended by Rungamornrat et al. (preparation for publication) for cracks in 

three-dimensional, anisotropic linear elastic infinite media, by Subsathaphol (2013) and 

Subsathaphol et al. (2015) for impermeable cracks in three-dimensional, linear 

piezoelectric infinite media, and later by Limwibul (2015) and Limwibul et al. (2016) 

to take the influence of different crack-face electrical/mechanical conditions into 
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account. The generalization to handle cracks in linear elastic half-space under several 

types of boundary conditions was also recognized in the work of Pham et al. (2015). 

While this particular technique was successfully implemented for various scenarios, the 

post-process for extracting the T-stress or generalized T-stress data still requires the 

calculation of derivatives of the sum of the crack-face displacement or generalized 

displacement along the crack front and this can lead to the degradation of the solution 

accuracy (e.g., Pham et al., 2015). To overcome such difficulty, Tran and Mear (2018) 

recently proposed an alternative by replacing the weak-form displacement integral 

equation for cracks by that involving the surface gradient of the sum of the crack-face 

displacement. Such the novel integral equation can provide the direct crack-face data 

to be employed in the post-process formula without the requirement for differentiations. 

While the technique developed by Tran and Mear (2018) is computationally promising 

for the analysis of nonsingular fracture data, the formulation and implementation are 

still restricted to cracks in two-dimensional media. The generalization to handle three-

dimensional cracks problems for both single and couple-field media has not been 

recognized in the literature.   

1.3 OBJECTIVE 

The key objective of the present study is to develop a numerical procedure, based upon 

a weakly singular boundary integral equation method fully equipped with a direct post-

process algorithm, for determining the generalized T-stress of cracks in three-

dimensional, linear coupled-field media. The accuracy and efficiency of the developed 

technique are also investigated.     

1.4 SCOPE OF WORK 

The present study is conducted within the following framework: (i) a domain containing 

cracks is infinite and made of a homogeneous, linear couple-field material obeying a 

linear constitutive law which is expressible in a form similar to Hooke’s law of elastic 

solids, (ii) the law of conservation governing the body flux and the measure of change 

in the state variable are linear and expressible in a form similar to equilibrium equations 

and kinematics of linear elasticity, (iii) a volumetric distributed source is absent, (iv) 
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crack surface is piecewise smooth and subjected to prescribed surface flux, and (v) only 

the generalized T-stress along the crack front is of interest.   

1.5 METHODOLOGY AND PROCEDURE 

The proposed research consists of five main tasks including the setup of linear coupled-

field boundary value problems, the formulation of governing integral equations for 

cracked bodies, the implementation of a solution procedure for determining primary 

unknowns, the post-process for fracture data of interest, and the verification and 

investigation of the developed technique. The key methodology and procedure to 

achieve each main task is outlined below. 

1.5.1 Setup of linear coupled-field boundary value problems 

Basic field equations for linear elasticity (i.e., equilibrium equations, constitutive laws, 

and strain-displacement relations) are generalized, by simply modifying the definition 

and dimensions of involving field quantities, to be capable of handling various types of 

governing physics including both single-field and coupled-field media. A final set of 

generalized field equations is still of the same form as those for linear elasticity and it 

equally applies to problems of steady-state heat conduction, steady-state flow in porous 

media, Laplace’s equations, linear elasticity, and linear coupled-field media (e.g., 

piezoelectric, piezomagnetic, and piezoelectromagnetic materials).       

1.5.2 Formulation of governing integral equations for crack body 

(1) An integral relation for the state variable within an infinite cracked medium is 

established first from the basic field equations using Gauss-divergence theorem 

and Green’s functions of the state variable and the body flux. Such integral relation 

is then used along with the generalized constitutive law to establish the integral 

relation for the body flux.   

(2) A systematic regularization technique, based upon the exchange of derivatives 

between the kernels and crack-face data using the integration by parts via Stokes’ 

theorem, similar to that proposed by Rungamornrat and Senjuntichai (2009) is 
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employed to establish singularity-reduced integral representations for both state 

variable and body flux. 

(3) A weakly singular, weak-form integral equation for the crack-face surface flux is 

established from the integral relation for the body flux using the weight residual 

technique and the integration by parts via Stokes’ theorem. The resulting weak-

form integral equation contains only weakly singular kernels and the jump in the 

crack-face state variable serves as the primary unknowns of this equation.       

(4) A weakly singular, weak-form integral equation for the surface gradient of the 

crack-face state variable is established by first taking limit of the singularity-

reduced integral relation for the state variable to point on the crack surface, then 

forming the surface gradient of the resulting integral equation, and finally 

employing the weight residual technique along with the integration by parts via 

Stokes’ theorem. The final weak-form integral equation contains only weakly 

singular kernels and involves both the unknown jump in crack-face state variable 

and the unknown surface gradient of the sum of the crack-face state variable. 

(5) A pair of weakly singular, weak-form integral equations for the crack-face surface 

flux and the surface gradient of the crack-face state variable constitutes the 

complete set of integral equations governing the unknown crack-face data.    

1.5.3 Implementation of solution procedure 

(1) A weakly singular SGBEM (e.g., Rungamornrat and Mear, 2008a,b; Rungamornrat 

and Senjuntichai, 2009; Phongtinnaboot et al., 2011; Rungamornrat et al., 2015) is 

adopted to solve the weakly singular, weak-form integral equation for the crack-

face surface flux for the unknown jump in the crack-face state variable. Special 

crack-tip elements with the same structure of element shape functions as those 

proposed by Li et al. (1998) and Rungamornrat and Mear (2008b) are employed to 

enhance the approximation of the near-front jump in the crack-face state variable. 

Special quadrature rules are employed to handle both weakly singular and nearly 

singular double surface integrals resulting from the discretization and the 

interpolation technique is utilized to avoid the direct evaluation of the contour 

integral in the calculation of kernels for general coupled-field media.  
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(2) A standard Galerkin technique and finite element approximation is employed to 

solve the weakly singular, weak-form integral equation for the surface gradient of 

the sum of the crack-face state variable. The solved jump in the crack-face state 

variable serves as the known data in this analysis step. The treatment of all 

involved nearly singular and weakly singular double surface integrals and the 

calculation of kernels follow the same procedure as that utilized in the SGBEM. 

1.5.4 Post-process for generalized T-stress 

(1) A structure of an asymptotic near-front expansion of the body flux is obtained 

following the same analogy as that employed by William (1957) for cracks in 

elastic media. 

(2) An explicit post-process formula for the generalized T-stress is developed, in terms 

of the surface gradient of the sum of the state variable along the crack front, using 

the constitutive relation and the continuity of the finite part of body flux and 

gradient of the state variable along crack boundary.  

1.5.5 Verification and investigation of developed technique 

(1) An implemented numerical procedure in terms of an in-house computer code is 

verified by comparing results with reliable benchmark solutions such as those 

associated with a penny-shaped crack in elastic and piezoelectric infinite media 

(e.g., Wang, 2004; Zhao et al., 2006; Rungamornrat and Pinitpanich, 2016; 

Rungamornrat et al., 2018). 

(2) The convergence behavior of numerical solutions is also investigated via the 

comparison of results from a series of mesh refinement.   

1.6 OUTPUT AND CONTRIBUTION 

The merit of the present research relied mainly upon the development and 

implementation of a novel weakly singular integral equation for the surface gradient of 

the sum of the crack-face state variable to treat cracks in a relatively broad, three-

dimensional setting. The direct post-process algorithm proposed in the present study 
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for extracting nonsingular fracture data also underpin the capability of the developed 

technique. The underlying integral formulation which is established in a general 

framework to handle various types of single-field and coupled-field problems together 

with a simple post-process algorithm should highlight the novelty and significant 

contribution of the present work to further enhance the computational technology. In 

particular, the availability of such the powerful analysis tool should enable the fracture 

modeling and simulations to be performed in a larger setting. While the development 

is carried out strictly to cracks in an infinite whole space, results gained from the present 

study provide a fundamental and sufficient basis for the extension to treat cracks in 

finite or other types of bodies. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

PROBLEM FORMULATION 

This chapter mainly presents the formulation of a general boundary value problem and 

the development of boundary integral equations governing cracks in a general, linear 

coupled-field infinite medium. A set of basic field equations is established first in a 

sufficiently general form allowing a variety of problems to be treated and boundary 

integral relations of Somigliana-type are then developed for the surface of discontinuity 

embedded in a whole space. A systematic regularization technique is then applied to 

derive a pair of weakly singular weak-form boundary integral equations governing the 

unknown crack-face data.  

2.1 PROBLEM DESCRIPTION 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic of isolated cracks in linear whole space under crack-face and 

remote loading 

Consider a three-dimensional body   occupying a whole Euclidean space 
3
 (i.e., 

3 = ) as illustrated in Figure 2.1. Let 
1 2 3{ ; , , }O x x x  be a Cartesian coordinate system 

with O denoting the origin and 
ix  denoting the coordinate along the direction of a unit 
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base vector 
ie . A state of the body is described by a collection of  vector fields (1)

u , 

(2)
u , …, ( )

u  and  scalar fields [1] , [2] , …, [ ]  and this collection is termed the 

state variables. It is remarked that  and  are nonnegative integers and 0 +  . 

Components of the state variables referring to the coordinate system 
1 2 3{ ; , , }O x x x  can 

be stored, for convenience in further development, in a single 3+-component vector 

û   such that 
( )

3( ) 3
ˆk

i k iu u + −=  and 
[ ]

3 [ ]
ˆk

ku  += . Here and in what follows, lower case 

indices with the parenthesis range from 1 to ; lower case indices with the bracket range 

from 1 to ; and lower case indices without the parenthesis and bracket range from 1 to 

3. The measure of change of all state variables across the entire body is denoted by a 

collection of  symmetric second-order tensor fields (1) , (2) , …, ( )  and  vector 

fields [1]
g , [2]

g , …, [ ]
g  and these quantities are termed the state-variable variations. 

In the present study, the state-variable variations are assumed to be linearly related to 

the state variables by 

( )( )
( ) ( ) ( ) ( )1 1

2 2

kk
jk k T k k i

ij

j i

uu

x x


 
 =  +  = +      

u u              (2.1) 

[ ]
[ ] [ ] [ ]

k
k k k

i

i

g
x





=   =


g                  (2.2) 

where   denotes a standard gradient operator and T  denotes its transpose. Consistent 

with the case of state variables, components of all state-variable variations referring to 

the coordinate system 
1 2 3{ ; , , }O x x x  are stored in a single 3x(3+)-matrix ̂   such that 

( )

:3( ) 3
ˆk

ij i k j  + −=  and 
[ ]

:3
ˆk

i i kg  +=  where the semicolon “:” is used here with the only 

purpose to separate the indices of rows and columns of the matrix. With the definition 

of û  and ̂ , the relations (2.1) and (2.3) can be now rewritten in a more concise indicial 

form as  
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3( ) 3
ˆˆ1

,     3( ) 3 3 , {1, 2,3}
2

ˆ
ˆ

,                             3

k iJ

i j

iJ

J

i

uu
J k j j

x x

u
J

x







+ −
  

+ = + −    
    = 


 

            (2.3) 

where the upper case indices, used here and in what follows, range from 1 to 3 + . 

The internal flux induced within the body due to the non-zero state-variable variations 

(or, equivalently, the nonhomogeneous state variables), termed the body flux, is 

measured by a collection of  symmetric second-order tensor fields (1) , (2) , …, 

( )  and  vector fields [1]
s , [2]

s , …, [ ]
s . The intensity of the body flux depends 

primarily on the behavior of a material constituting the body and, in the present study, 

the following linear constitutive laws are considered:   

( ) ( )( ) ( ) ( )[ ] ( ) ( ) ( )( ) ( ) ( )[ ] [ ]k k r r k r r k k r r k r r

ij ijpq pq ijp pE D g = +  = +E D g               (2.4) 

[ ] [ ]( ) ( ) [ ][ ] ( ) [ ] [ ]( ) ( ) [ ][ ] [ ]k k r r k r r k k r r k r r

i pqi pq ip ps D C g= +  = +s D C g              (2.5) 

where 
( )( )k r

E , 
( )[ ]k r

D , and ( )[ ]k r
C  are fourth-order, third-order, and second-order tensors 

of material constants, respectively, and repeated indices imply the summation over their 

range. In addition, the material is postulated to possess following symmetries: 
( )( )k r

ijpqE =

( )( )k r

jipqE = ( )( )k r

ijqpE = ( )( )k r

pqijE , 
( )( ) ( )( )k r r k

ijpq ijpqE E= , 
( )[ ] ( )[ ]k r k r

ijp jipD D= , 
[ ]( ) [ ]( )k r k r

ijp jipD D= , 
( )[ ] [ ][ ]k r r k

ijp ijpD D=

, 
[ ][ ] [ ][ ]k r k r

ip piC C= , and 
[ ][ ] [ ][ ]k r r k

ip ipC C= . Components of the body flux can then be stored, 

in a similar fashion, in a single 3x(3+)-matrix ̂   such that 
( )

:3( ) 3
ˆk

ij i k j  + −=  and 

[ ]

:3
ˆk

i i ks  += . By combining the relations (2.1)-(2.2) and the constitutive relations (2.4) 

and (2.5) and then using the introduced concise notations, it leads to the relation 

between the body flux and the state variables of the form  

,
ˆˆ ˆ

iJ iJKm K mE u =                   (2.6) 

where ˆ
iJKmE  is termed a generalized moduli and defined in terms of 

( )( )k r
E , 

( )[ ]k r
D , and 

( )[ ]k r
C  in a manner consistent with the body flux ˆ

iJ  and the state variable ˆ
Ku . It is 

important to note that due to the symmetric properties of 
( )( )k r

E , 
( )[ ]k r

D , and ( )[ ]k r
C , it 
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can readily be verified that ˆ ˆ
iJKm mKJiE E= . Finally, the body flux must satisfy the 

following laws of conservations: 

( ) ( ) ( ) ( )

,( ) 0k T k k k

ij i jb + =  + =0b                (2.7) 

[ ] [ ] [ ] [ ]

,0 0k k k k

i ia s a + =  + =s                 (2.8) 

where   denotes the divergence operator and a collection of  prescribed vector fields 

(1)
b , (2)

b , …, ( )
b  and  prescribed scalar fields [1]a , [2]a , …, [ ]a   is termed the 

distributed body source. By storing components of the distributed body source in a 

single 3+-component vector b̂   such that ( )

3( ) 3
ˆk

i k ib b + −=  and [ ]

3 [ ]
ˆk

ka b += , the laws of 

conservation (2.7) and (2.8) simply reduces in form to   

,
ˆˆ 0iJ i Jb + =                    (2.9) 

The field equations (2.3), (2.6) and (2.9) constitute a complete set of equations 

governing the state variables û , the state-variable variations ̂ , and the body flux ̂ . 

At any point on a smooth surface, the surface flux described by a collection of  

vector fields (1)
t , (2)

t , …, ( )
t  and  scalar fields [1]d , [2]d , …, [ ]d   can be related to 

the body flux and the outward unit normal vector to the surface n  via the laws of 

conservation by  

( ) ( ) ( ) ( )( )k k T k k

i ji jt n=  =t n               (2.10) 

[ ] [ ] [ ] [ ]k k k k

j jd d s n=  =s n                (2.11) 

Again, the relations (2.10) and (2.11) can also be expressed in a concise form as  

ˆ ˆ
J iJ it n=                  (2.12) 

It is worth noting that the field equations (2.3), (2.6) and (2.9) along with the relation 

(2.12) and the involved field quantities, via the notation introduced above, are of the 

same form as that for problems in linear elasticity. In addition, this form of general field 

equations can be applied to various classes of linear problems via the proper change of 

the two integers  and  . For instance, field problems governed by Laplace’s or 

generalized Laplace’s equation can be handled by setting 0, 1 = = ; linear elasticity 
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problems are obtained by taking 1, 0 = = ; linear piezoelectric and linear 

piezomagnetic problems are handled by setting 1, 1 = = ; and linear 

piezoelectromagnetic are obtained by taking 1, 2 = = .  

Now, it is ready to further provide the clear description of a problem to be 

investigated in the present study. The body   shown in Figure 2.1 is made of a material 

obeying the constitutive law (2.6) with the generalized moduli ˆ
iJKmE  constant 

throughout and is free of the distributed body source (i.e., ˆ 0Jb = ). The medium contains 

isolated surfaces across which the state variables experience the jump. The surface of 

discontinuity is represented by two geometrically identical surfaces S +  and S −  whose 

outward unit normal vectors at the coincident points, denoted respectively by +
n  and 

−
n , satisfy + −= −n n . In the present study, the attention is restricted only to the case 

that the surface of discontinuity is piecewise smooth, free of the jump in the state 

variables along its boundary, and subjected to fully prescribed surface flux. From now 

on, a term “crack” is used, for convenience and establishing the connection to problems 

in linear elasticity, to designate this type of discontinuity. In addition to the surface flux 

applied to the crack surface, the body is subjected to the constant remote body flux ˆ          

2.2 STANDARD INTEGRAL RELATIONS 

As an essential component in the development of standard integral relations for cracks 

in an infinite medium, fundamental solutions of an uncracked whole space subjected to 

a particular distributed body source ˆ ( ) ( )P

J JPb  − = −x x   where JP  denotes the 

generalized Kronecker symbol and ( ) − x  is the Dirac-delta distribution center at x  

is established first. A system of partial differential equation governing the state-variable 

fundamental solution ( )P

JU − x  and the associated body flux ( )P

iJ − x  is given by 

, ( ) ( ) 0P

iJ i JP  − + − =x x                 (2.13) 

,
ˆ( ) ( )P P

iJ iJKm K mE U − = −x x                (2.14) 
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By applying the same solution technique via the Radon integral transform suggested by 

Rungamornrat and Mear (2008a), the state-variable fundamental solution ( )P

JU − x  

can be obtained explicitly as 

1

2

0

1
( ) ( , ) ( )

8

P

J JPU ds
r

−

 =

− = 
z r

x z z z               (2.15)  

where = −r x , || ||r = r , z  is a unit vector along the plane 0 =z r , ( , )z z  is a 

symmetric matrix defined by ( , )JP i iJPj jz E z=z z , and 
1( , )−z z  stands for the inverse of 

( , )z z . The body-flux fundamental solution ( )P

iJ − x  can readily be obtained by 

substituting (2.15) into the constitutive relation (2.14). It is obviously seen that 

( )P

JU − x  and ( )P

iJ − x  are singular only at = x  of order 1/ r  and 21/ r , 

respectively, and, in addition, ( ) ( )P J

J PU U− = −x x  . 

By combing (2.6) and (2.9) and setting ˆ 0Jb = , it yields a system of partial 

differential equations governing the state variables of a cracked medium shown in 

Figure 2.1: 

,
ˆ ˆ 0iJKm K miE u =                  (2.16)  

Taking the inner product between (2.16) and ( )P

JU − x  and then integrating the result 

over the entire body   lead to 

,
ˆ ˆ( ) ( ) ( ) 0P

J iJKm K miU E u dV


− = x                 (2.17)  

By performing the integration by parts via Gauss-divergence theorem and then using 

the constitutive law (2.6), it gives rise to 

, ,
ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ                                                 ( ) ( ) ( ) ( )

P P P

iJKm J i K m J J J J

S S

P

J iJ i

E U u dV U t dS U t dS

U n dS

+ −

+ −





− = − + −

+ −

  



x x x

x

        

   
    (2.18) 
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where ˆ ˆ( ) ( ) ( )J iJ it n+ +=    and ˆ ˆ( ) ( ) ( )J iJ it n− −=    denote the prescribed surface 

fluxes on the crack surfaces S +
 and S −

, respectively. By recalling the symmetry 

ˆ ˆ
iJKm mKJiE E=  and (2.14), the relation (2.18) reduces to  

,
ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ                                          ( ) ( ) ( ) ( )

P P P

mK K m J J J J

S S

P

J iJ i

u dV U t dS U t dS

U n dS

+ −

+ −





 − = − + −

+ −

  



x x x

x

        

   
         (2.19)  

By performing the integration by parts of the integral on the left hand side via Gauss-

divergence theorem, it yields 

,
ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ                                              + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                   

P P P

mK m K J J J J

S S

P P

mK m K mK m K

S S

u dV U t dS U t dS

n u dS n u dS

+ −

+ −

+ −



+ + − −

 − = − − − −

 − +  −

  

 

x x x

x x

        

       

ˆ ˆ                          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P P

J iJ i mK m KU n dS n u dS
 

− − +  − x x       

(2.20)  

where ˆ
Ku+

 and ˆ
Ku−

 denote the values of state variables on the crack surfaces S +
 and 

S −
, respectively. From the definition of the body-flux fundamental solution and 

properties of JP  and ( ) − x , the integral relation (2.20) becomes  

ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ         ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ         ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

P P

P J J J J

S S

P P

mK m K mK m K

S S

P P

J iJ i mK m K

u U t dS U t dS

n u dS n u dS

U n dS n u dS

+ −

+ −

+ −

+ + − −

 

= − + −

−  − −  −

+ − −  −

 

 

 

x x x

x x

x x

     

       

       

         (2.21)  

By using the remote condition, the identical geometry of S +
 and S −

, 
+ −= −n n , and 

the continuity of ( )P

JU − x  and ( )P

iJ − x  across the cracks, it leads to the integral 

relation for the state variables 

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P P

P P J J mK m K

S S

u u U t dS n u dS
+ +

 += + −  −  −  x x x x               (2.22)  
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where ˆ ˆ ˆ
J J Jt t t+ − = +  and ˆ ˆ ˆ

K K Ku u u+ − = −  are the sum of the crack-face surface flux and 

the jump in the crack-face state variables, respectively. The integral relation (2.22) is 

of the same form as that of Somigliana’s identity. To establish the integral relation for 

the body flux, the integral relation (2.22) is first substituted into (2.6) and then using 

the constitutive law, the reciprocity ( ) ( )P J

J PU U− = −x x  , the translational properties 

/ /P P

J i J iU U x  = −   and / /P P

mK i mK ix  = −  , it finally yields 

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P lK

iJ iJ iJ P iJ l K

S S

t dS n u dS 
+ +

 += −  −  +  −  x x x x                (2.23)  

where the function ( )lK

iJ − x  is defined by 

( )ˆ( )
P

lK lK
iJ iJPm

m

E


 −
 − =



x
x


               (2.24)  

From the singularity behavior of ( )P

iJ − x , the function ( )lK

iJ − x  is singular 

at = x  of order 
31/ r . It is noted that the integral relation for the state variable (2.22) 

involves the weakly singular kernel ( )P

JU − x  and the strongly kernel ( )P

iJ − x  

whereas the integral relation for the body flux (2.23) contains the strongly singular 

kernel ( )P

iJ − x  and the hypersingular kernel ( )lK

iJ − x . 

2.3 SINGULARITY-REDUCED INTEGRAL RELATIONS 

By following the same strategy proposed by Rungamornrat and Mear (2008a), the 

strongly singular kernel ( )P

iJ − x  and the hypersingular kernel ( )lK

iJ − x  can be 

decomposed into 

( )
( ) ( )

P
P P mJ
iJ iJ ism

s

G
H 



 −
 − = − +




 

x
x x              (2.25) 

ˆ( ) ( ) ( )iJ tJ

lK sKJi lqm irt mK

q r

E C  
 

 
 − = − − + −

 
x x x              (2.26) 
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where ( )P

mJG − x  and ( )tJ

mKC − x  are unknown weakly singular functions and 

( )P

iJH − x  is a prescribed function defined by 

3
( ) ( )

4

P JP
iJ i iH x

r





− = − −x                (2.27)  

The existence of the functions ( )P

mJG − x  and ( )tJ

mKC − x  in the decompositions (2.25) 

and (2.26) and the corresponding solution procedure follow directly the work of 

Rungamornrat and Mear (2008a). The explicit expression of ( )P

mJG − x  and 

( )tJ

mKC − x  is given by 

-1

2

0

( ) ( , ) ( )
8

mqa qJKlP

mJ a l KP

E
G z z ds

r




 =

− = 
z r

x z z z              (2.28) 

1

2

0

( ) ( , ) ( )
8

tJPl

mKQstJ

mK s l PQ

A
C z z ds

r

−

 =

− = 
z r

x z z z              (2.29) 

where mqa  is a standard permutation symbol and the constants tJPl

mKQsA  are defined in 

terms of the generalized moduli by 

1

3

ˆ ˆ ˆ ˆtJPl

mKQs ptd pmq dJPl qKQs lQPs dJKqA E E E E
 

 
+

 
= − 

 
            (2.30)  

It is evident from (2.27), (2.28) and (2.29) that ( )P

iJH − x , ( )P

mJG − x  and ( )tJ

mKC − x  

are singular at = x  of order 21/ r , 1/ r  and 1/ r , respectively. 

By employing the decomposition (2.25) in the integral relation for the state 

variables (2.22) and then performing the integration by parts of an integral involving 

the kernel ( )P

mJG − x  via Stokes’ theorem, it leads to an alternative, singularity-

reduced integral representation for the state variables: 

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ                      ( ) ( ) ( )

P P

P P J J mJ m J

S S

P

mJ m J

S

u u U t dS H n u dS

G D u dS

+ +

+

 += + −  − − 

+ − 

 



x x x x

x

      

  

        (2.31)  
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where /m i ism sD n  =    is the surface differential operator and the contribution of the 

line integral along the boundary of the crack vanishes due to the closure condition (i.e., 

ˆ 0Ju =  on S + ). Since 
P

mJ mH n+
 is singular at = x  of order 1/ r  (see the work of 

Xiao, 1998), the integral relation (2.31) involves only weakly singular kernels.  

Similarly, the singularity-reduced body-flux integral relation can be derived as 

follow: first, the decompositions of ( )P

iJ − x  and ( )lK

iJ − x  given by (2.25) and 

(2.26) are substituted into the body-flux integral relation (2.23); next, an integral 

containing the kernel ( )tJ

mKC − x  is integrated by parts via Stokes’ theorem; and, 

finally, the translational properties of both ( )P

mJG − x  and ( )tJ

mKC − x  are utilized. The 

resulting integral relation is given by 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

                    ( ) ( ) ( )

K tK

lK lK lrt tJ J mJ m J

r S S

J

lK J

S

G t dS C D u dS
x

H t dS

  
+ +

+


   

= + −  + −  
   

− − 

 



x x x

x

     

  

    (2.32)  

It is seen that the alternative, body-flux integral relation (2.32) contains only strongly 

singular kernels of order 21/ r . 

A pair of singularity-reduced integral relations (2.31) and (2.32) can be used in 

the post-process for the state variables and body flux at any interior point and, at the 

same time, constitutes an essential component in the development of integral equations 

governing the unknown crack-face data as described in the following chapter.   

2.4 WEAKLY SINGULAR WEAK-FORM INTEGRAL EQUATIONS 

By taking limit, as point x  approaches a smooth point S +y , of the state-variable 

integral relation (2.31) and noting the contribution of a source embedded in the strongly 

singular kernel ( )P

iJH − x , it leads to a state-variable integral equation 

1
ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

ˆ                            ( ) ( ) ( )

P P

P P J J mJ m J

S S

P

mJ m J

S

u u U t dS H n u dS

G D u dS

+ +

+

 + − = −  − − 

+ − 

 



y y y y

y

      

  
     (2.33)  
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where ˆ ˆ ˆ
P P Pu u u+ − = +  denotes the sum of crack-face state variables. The integral 

equation for the surface gradient of the sum of the crack-face state variable can now be 

obtained by directly applying the surface differential operator sD to (2.33) and the final 

result is given by 

1
ˆ ˆ( ) ( ) ( )

2
s P s P s PD u D u D − = y y y               (2.34)  

where the function ( )P y  is defined by 

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ           ( ) ( ) ( )

P P

P J J mJ m J

S S

P

mJ m J

S

U t dS H n u dS

G D u dS

+ +

+

+ = −  − − 

+ − 

 



y y y

y

      

  

         (2.35)  

The weak-form statement of (2.33), established by applying a standard weight residual 

technique, takes the form 

1
ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

ˆ                                                     ( ) ( ) ( ) ( ) ( ) ( )

                           

P

P P P P J J

S S S

P

P mJ m J

S S

t u u dS t U t dS dS

t H n u dS dS

+ + +

+ +



+

 
 − = −  

 

− − 

  

 

y y y y y y y

y y y

  

   

ˆ                            + ( ) ( ) ( ) ( ) ( )P

P mJ m J

S S

t G D u dS dS
+ +

−  y y y  

 (2.36)  

where ( )Pt y  is a vector containing sufficiently smooth test functions. The weak-form 

integral equation (2.35) contains only weakly singular kernels of order 1/ r  and 

involves two sets of unknown crack-face data, one associated with the sum of the crack-

face state variables ˆ
Pu  and the other corresponding to the jump in the crack-face 

surface flux ˆ
Ju . An alternative weak-form integral equation for the crack-face data 

ˆ
Pu , expressed in terms of its surface gradients ˆ

s PD u , can be established from the 

integral equation (2.34). Applying the weight residual technique to (2.34) yields 

1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
sP s P s P sP s P

S S

D u D u dS D dS 
+ +

 
 − =  

 
 y y y y y y y           (2.37)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

25 

where ( )sP y  denotes a collection of sufficiently smooth test functions. Note that the 

resulting integral equation (2.34) still involves strongly singular kernels due to the 

surface differential operator sD . To further regularize such strong singularity, the 

integral on the right hand side of (2.37) is integrated by parts via Stokes’ theorem and 

the final weak-form equation becomes  

1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
sP s P s P s sP P sP P s

S S S

D u D u dS D dS dy  
+ + +





 
 − = −  +  

 
  y y y y y y y y y    (2.38)  

From the structure of ( )P y  defined in (2.35), the weak-form integral equation 

(2.38) is apparently weakly singular in the sense that all involved kernels are singular 

of order 1/ r . Similar to the integral equation (2.36), the weak-form equation (2.38) 

contains two sets of unknown crack-face data, the surface gradient of the sum of the 

crack-face state variables ˆ
s PD u  and the jump in the crack-face surface flux ˆ

Ju . 

In the derivation of the weak-form integral equation for the surface flux on the 

crack, the body-flux integral relation is employed by first forming the product 

ˆ ( ) ( )lK ln +
x y  for any smooth point S +y  and then taking the limit an interior point

S +→ x y  to obtain   

1
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                ( ) ( ) ( ) ( )

K tK

K lK l t tJ J mJ m J

S S

J

l lK J

S

t n D G t dS C D u dS

n H t dS


+ +

+

 +

+

  
 − = −  + −  

  

− − 

 



y y x x

y x

     

  

   (2.39)  

where ˆ ˆ ˆ
K K Kt t t+ − = −  denotes the jump in the crack-face surface flux and the contribution 

of the source contained in the kernel ( )J

lKH − x  is already taken into account. Taking 

the inner product between (2.39) and a vector of sufficiently well-behaved test functions 

Kv , then integrating the result over the crack, and finally performing the integration by 

parts of terms involving the surface differential operator tD  yield  
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1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

ˆ                                                             ( ) ( ) ( ) ( ) ( )

             

K

K K lK l t K tJ J

S S S

tK

t K mJ m J

S S

v t n dS D v G t dS dS

D v C y D u dS dS


+ + +

+ +

 + 
 − = − −  

 

− − 

  

 

y y y y y y y

y y

  

  

                                                ( ) ( ) ( ) ( ) ( ) ( )J

K lK l J

S S

v H n t dS dS
+ +

+− −  y y y y  

    (2.40)  

In the development of (2.40), the test functions Kv  are chosen specifically to 

satisfy the same closure condition along the crack boundary as that of ˆ
Ju  and this, as 

a result, eliminates the contribution of all line integrals resulting from Stokes’ theorem. 

Clearly, the weak-form equation (2.40) contains only weakly singular kernels of order 

1/ r  and clearly involves a single set of unknown crack-face data, i.e., the jump in the 

crack-face state variables. 

A pair of weakly singular, weak-form integral equations (2.36) and (2.40) or 

(2.38) and (2.40) is adequate for formulating a boundary value problem of isolated 

cracks in a whole space made of general coupled-field materials. Note in particular that 

those weak-form integral equations involve the unknown sum of and jump in the state 

variable across the crack surface while containing the prescribed crack-face surface 

flux, in terms of the sum of and jump in the crack-face surface flux, and the prescribed 

remote body flux. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

SOLUTION IMPLEMENTATIONS 

In this chapter, a numerical technique for solving a system of integral equations 

governing cracks in a general coupled-field whole space is proposed. Components 

essential for the development of such solution procedure including the solution 

discretization, evaluation of involved kernels and double surface integrals, and the post-

process algorithm for generalized T-stress, are briefly addressed. 

3.1 KEY GOVERNING INTEGRAL EQUATIONS 

A pair of weakly singular, weak-form integral equations (2.38) and (2.40) derived in 

Chapter 2 is utilized as the key governing equations of a boundary value problem of 

cracks in linear coupled-field media. Those integral equations can be re-expressed, in a 

more concise form suiting further reference and discussion, as 

ˆˆ ˆ ˆ ˆ( , ) ( , ) ( , ) 2 ( , ) ( , ) +  +  = + D H G D Uu u u u t                  (3.1) 

ˆ ˆ ˆˆ ˆ( , ) ( , ) 2 ( , ) ( , ) ( , ) + = −  + −  − C D D H Gv u v t v n v t v t             (3.2) 

where all involved linear and bilinear integral operators are defined, for any 3+-

component vectors U, V and any 3x(3+)-matrix T, by  

1
( , ) ( ) ( ) ( )

2
sP s P

S

T D V dS
+

= D T V y y y                (3.3) 

1
( , ) ( ) ( ) ( )

2
K K

S

U V dS
+

= D U V y y y                 (3.4) 

( , ) ( ) ( ) ( ) ( )

              ( ) ( ) ( ) ( ) ( )

P

sP J J s

S S

P

s sP J J

S S

T U V dS dy

D T U V dS dS

+ +

+ +



= −

− −

 

 

U T V y y

y y y

  

  
             (3.5) 

( , ) ( ) ( ) ( ) ( ) ( )tK

t K mJ m J

S S

DU C D V dS dS
+ +

= − C U V y x y                (3.6) 
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( , ) ( ) ( ) ( ) ( ) ( )

              ( ) ( ) ( ) ( ) ( ) ( )

P

sP mJ m J s

S S

P

s sP mJ m J

S S

T H n V dS dy

D T H n V dS dS

+ +

+ +

+



+

= −

− −

 

 

H T V y y

y y y

   

   
            (3.7) 

( , ) ( ) ( ) ( ) ( ) ( ) ( )J

K lK l J

S S

U H n V dS dS
+ +

+= − H U V y y y y               (3.8) 

( , ) ( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( ) ( )

P

s sP mJ m J

S S

P

sP mJ m J s

S S

D T G D V dS dS

T G D V dS dy

+ +

+ +

= −

− −

 

 

G T V y y y

y y

  

  
             (3.9) 

( , ) ( ) ( ) ( ) ( ) ( )K

t K tJ J

S S

DU G V dS dS
+ +

= − G U V y y y              (3.10) 

It is evident that the weak-form integral equation (3.1) involve two sets of 

unknown crack-face data (i.e., the sum of the crack-face state variables ˆu   which 

appear in terms of its surface gradients and the jump in the crack-face state variables 

ˆu ) and two sets of prescribed data (i.e., the state variables ˆu  associated with the 

prescribed remote body flux ˆ   and the sum of the crack-face surface flux ˆt ). Unlike 

(3.1), the weak-form integral equation (3.2) contains only the unknown jump in the 

crack-face state variables ˆu  and the prescribed data associated with the crack-face 

surface flux ˆt , ˆt  and the remote body flux ˆ  . Due to the one-way coupling feature 

of (3.1) and (3.2), it is clearly inefficient to solve this system of equations 

simultaneously. In the present study, the weak-form equation (3.2) will be solved first 

to obtain the unknown crack-face data ˆu  and such solution will serves as the known 

information in the weak-form equation (3.1). The other set of unknown crack-face data, 

the surface gradients of ˆu , can subsequently be obtained by solving (3.1). It should 

be clear from (2.31) and (2.32) that once the jump in the crack-face state variables ˆu  

is solved, the state variables and the body flux at any interior point of the medium can 

be calculated from those integral formulae. In addition, by following the same strategy 

proposed by Rungamornrat and Mear (2008b,c) and Rungamornrat and Senjuntichai 

(2009), the solved data ˆu  can be further employed to extract the information of the 

intensity factors along the edge of the crack. In the post-process of those quantities, the 
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information of ˆu  and its surface gradients is clearly not required and, as a result, the 

weak-form integral equation (3.1) is not necessary to be solved. In the present study, 

the crack-face data ˆu  is of primary interest since such information can be further 

exploited to directly extract the information of the generalized T-stress along the 

boundary of the crack.          

3.2 SOLUTION PROCEDURE FOR ˆ
Ju  

The weakly singular, symmetric Galerkin boundary element method (SGBEM) similar 

to that reported by Li et al. (1998), Rungamornrat and Mear (2008b,c), and 

Rungamornrat and Senjuntichai (2009) is extended to solve the weak-form integral 

equation (3.2) for the unknown jump in the crack-face state variables ˆ
Ju . The 

solution discretization follows directly the Galerkin strategy and standard finite element 

approximation; more specifically, the test function Kv  and the trial function ˆ
Ju  are 

discretized as 

*( ) ( ) *( ) ( )

1 1

ˆ ( ) ( );             ( ) ( )
N N

h h h h

J J K K

h h

u u v v 
= =

 =  = ξ ξ y y                                 (3.11) 

where 
*( )h

Ju  are nodal degrees of freedom associated with the hth node; 
*( )h

Kv  are 

arbitrary nodal constants associated with the hth node; ( )h  denotes the nodal basis 

functions associated with the hth node; and N is the number of nodes resulting from the 

discretization. By substituting (3.11) into (3.2) and then employing the arbitrariness of 

*( )h

Kv , it yields a system of linear algebraic equations 

= 0 0 0
CΔU D -D -H -G                                                                                         (3.12) 

where ΔU  is a vector consisting of unknown nodal degrees of freedom defined by 

*( )

( 1)[ ] h

h J Ju − + = ΔU  with 3  = +  and the coefficient matrix C  and the known 

vectors 0 0 0, , ,
D D H G  are given by

( ) ( )

( 1) , ( 1) ( ) ( ) ( ) ( ) ( )[ ] h tK r

h K r J t mJ m

S S

D C D dS dS   
+ +

− + − + = − y ξ x ξ ξ yC                   (3.13) 
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( )

( 1)
ˆ[ ] ( ) ( ) ( )h

h K lK l

S

n dS  
+

  +

− + =  y y yD                                                                    (3.14) 

0 (h)

( 1)

1
ˆ[ ] ( ) ( ) ( )

2
h K K

S

t dS 
+

− + =  y y yD                                                                    (3.15) 

0 ( )

( 1)
ˆ[ ] ( ) ( ) ( ) ( ) ( ) ( )h J

h K lK l J

S S

H n t dS dS 
+ +

+

− + = −  y ξ y y ξ ξ yH                                (3.16) 

0 ( )

( 1)
ˆ[ ] ( ) ( ) ( ) ( ) ( )h K

h K t tJ J

S S

D G dS dS 
+ +

− + = −  y ξ y t ξ ξ yG                                       (3.17) 

In particular, nodal basis functions generated systematically by a finite element 

mesh are employed and a near-front approximation of ˆ
Ju  is enhanced by using 

special crack-tip elements proposed by Li et al. (1998) and Rungamornrat and Mear 

(2008b) for cracks in elastic media and by Rungamornrat and Mear (2008c) for cracks 

in piezoelectric media. To construct a system of linear algebraic equations resulting 

from the solution discretization, the evaluation of all involved kernels and all types of 

double surface integrals are properly treated using the strategy described in 

Rungamornrat and Mear (2008b) and Xiao (1998), respectively. The linear solution of 

such the system is then obtained via a preconditioning conjugate gradient algorithm. 

3.3 SOLUTION PROCEDURE FOR ˆ
Ju  

Once the jump in the crack-face state variables ˆ
Ju  is solved, it is then substituted into 

(3.1) and the resulting weak-form equation contains the only unknown in terms of the 

surface gradients of ˆu , i.e., ˆ
s PD u . Note, in addition, that the bilinear operator D  is 

not only kernel free but also defined in terms of a single surface integral. To solve this 

weak-form integral equation, a standard procedure based on Galerkin technique and 

finite element approximation is adopted. In particular, the test function 
sP  and trial 

function
 

ˆ
s PD u   are approximated by 

*( ) ( ) *( ) ( )

1 1

ˆ ˆ ˆ( ) 2 ( ) ( ) ( ) ( );   ( ) ( )      
N N

h h h h

s P s P s P sP sP sP

h h

D u D u D u D u   

= =

 − =    = y y y y y y  (3.18) 
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where 
s PD u  denotes the surface gradient of the sum of the crack-face state variable 

less that inducing by the remote loading in the un-cracked case; ( )h denotes the nodal 

basis shape function associated with the hth node; 
*( )( ) h

sPD u  are unknown nodal 

quantities associated with the hth node; and 
*( )h

sP  are arbitrary constants corresponding 

to the hth node. Due to the regular behavior of 
s PD u  on the entire crack surface, 

continuous basis functions constructed on a mesh of standard isoparametric elements 

are utilized in the approximation of both solution and test functions. By substituting 

(3.18) into (3.1), it results in 

 [ ] o= −K DΣU T BΔU                                                                                             (3.19) 

where DΣU isa vector of nodal unknowns defined by *( )

3 ( 1) ( 1)
ˆ[ ] ( ) r

r J k kJD u − + − + = DΣU  

and the coefficient matrices K , B  and the known vector 
0

T  are defined by 

( ) ( )

3 ( 1) ( 1) ,3 ( 1) ( 1)

1
[ ] ( ) ( ) ( )

2

h r

h P s r J k sk PJ

S

dS       
+

− + − + − + − + =  y y yK                             (3.20) 

0 ( )

3 ( 1) ( 1)

( )

1 ˆ[ ] ( ) ( ) ( ) ( )
2

ˆ                           ( ) ( ) ( ) ( ) ( )

h P

h P s J J s

S S

h P

s J J

S S

U dS dy

D U dS dS

  



+ +

+ +

− + − +



= − 

− − 

 

 

T y ξ y t ξ ξ

y ξ y t ξ ξ y

                            (3.21) 

( ) ( )

3 ( 1) ( 1) , ( 1)

( ) ( )

(

[ ] ( ) ( ) ( ) ( ) ( )

                                    ( ) ( ) ( ) ( ) ( ) ( )

                                    + 

h P r

h P s r J mJ m s

S S

h P r

s mJ m

S S

h

s

H n dS dy

D H n dS dS

D

    

 



+ +

+ +

+

− + − + − +



+

= −

− −

 

 

B y ξ y ξ ξ

y ξ y ξ ξ y





) ( )

( ) ( )

( ) ( ) ( ) ( )

                                   ( ) ( ) ( )

P r

mJ m

S S

h P r

mJ m s

S S

G D dS dS

G D dS dy



 

+ +

+ +

−

− −

 

 

y ξ y ξ y

y ξ y ξ

       (3.22) 

According to (3.20), it is clear that the coefficient matrix K  is symmetric. The 

numerical integration of both path and surface integrals follows the same strategy as 

that reported by Rungamornrat and Mear (2008b) and Limwibul et al. (2016). Certain 

components used in the development of SGBEM are also adopted, here, to treat the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

32 

double surface integrals containing the prescribed or solved data. The resulting system 

of linear algebraic equations (3.19) is then solved by the preconditioning conjugate 

gradient. 

3.4 POST-PROCESS FOR GENERALIZED T-STRESS 

Once the surface gradient of the sum of the crack-face state variables ( ˆ
s PD u ) is solved, 

a generalized T-stress, defined as the finite part of the body flux along the boundary of 

the crack, can be determined from this set of data as described below.  

Let cx  denote a nodal point located at the crack boundary and  1 2 3; , ,c x x xx  be a 

local Cartesian coordinate system with the origin at cx  and the unit base vectors 

 1 2 3, ,e e e  as shown in Figure 3.1. In particular, 2

+= −e n  whereas 3e  and 1e  are chosen 

tangent and normal to the crack-front at cx , respectively. By extending the work of 

Subsathaphol et al. (2015) and Limwibul et al. (2016), the nonsingular part of the body 

flux along the boundary of the crack, represented by a collection of  symmetric 

second-order tensors (1)

ijT , (2)

ijT , …, ( )

ijT   and  vectors 
[1]

iQ , 
[2]

iQ , …, 
[ ]

iQ 
 can be 

related to the finite part of the state-variable variation at the same point, denoted by a 

collection of  symmetric second-order tensors 0(1)

ij , 0(2)

ij , …, 0( )

ij

  and  vectors 

0[1]

ig , 
0[2]

ig , …, 
0[ ]

ig 
, via the constitutive relations (2.4) and (2.5), i.e.,   

( ) ( )( ) 0( ) ( )[ ] 0[ ]k k r r k r r

ij ijpq pq ijp pT E D g= +                (3.23) 

[ ] [ ]( ) 0( ) [ ][ ] 0[ ]k k r r k r r

i pqi pq ip pQ D C g= +                           (3.24) 

where the “bar” superscript is used to designate components in the local coordinate 

system  1 2 3; , ,c x x xx . From the continuity of the finite part of the body flux at the point 

cx , it can be verified that the following out-of-plane components 
(1) (1) (1)

12 22 23{ , , }T T T , 

(2) (2) (2)

12 22 23{ , , }T T T , …, 
( ) ( ) ( )

12 22 23{ , , }T T T  
 and 

[1]

2Q , 
[2]

2Q , …, 
[ ]

2Q 
 are known and can be 

obtained in terms of the prescribed surface flux on the crack at cx . The remaining  
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components, i.e., 
(1) (1) (1)

11 33 13{ , , }T T T , 
(2) (2) (2)

11 33 13{ , , }T T T , …, 
( ) ( ) ( )

11 33 13{ , , }T T T  
 and 

[1] [1]

1 3{ , }Q Q

, 
[2] [2]

1 3{ , }Q Q , …, 
[ ] [ ]

1 3{ , }Q Q 
 are unknown a priori and termed, here, the generalized T-

stress components. From the relations (2.1) and (2.2), the finite part of the state-variable 

variations are related to the sum of the crack-face state variables at the point cx  by 

( )( )
0( ) 1

4

kk
jk i

ij

j i

uu

x x


 
= + 

   
               (3.25) 

[ ]
0[ ] 1

2

k
k

i

i

g
x


=


                           (3.26) 

By first applying the coordinate transformation to the solved data ˆ
s PD u  in the global 

coordinate system, it leads to the surface gradients ˆ
s PD u  defined in the local 

coordinate system  1 2 3; , ,c x x xx . The in-plane components of 0( )k

ij  and 
0[ ]k

ig  (i.e., 

0( ) 0( ) 0( )

11 33 13{ , , }k k k    and 
0[ ] 0[ ]

1 3{ , }k kg g ) can then be obtained directly from the information 

ˆ
s PD u ; by following relations below: 

0( )

11 3 1 3( ) 3

1
ˆ

2

k

s P s k Pa a D u + −=                                                                                       (3.27) 

0( )

33 1 3 3(k) 3

1
ˆ

2

k

s P s Pa a D u + −= −                                                                                     (3.28) 

0( )

13 3 3 3( ) 3 1 1 3( ) 3

1
ˆ ˆ( )

4

k

s P s k P s P s k Pa a D u a a D u + − + −=  −                                                     (3.29) 

0[ ]

1 3 3 [k]

1
ˆ

2

k

s sg a D u +=                                                                                               (3.30) 

0[ ]

3 1 3 [k]

1
ˆ

2

k

s sg a D u += −                                                                                            (3.31) 

where ija  denotes the cosine of the angle between ith and jth  coordinate axis. By 

combing the known information of the in-plane components of the finite part of the 

state-variable variation and the out-of-plane components of the finite part of the body  
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flux, (3.23) and (3.24) yield a system of linear algebraic equations sufficient for 

determining the generalized T-stress components. According to (3.27)-(3.21), It clearly 

seen that the surface gradient of sum of crack-face state variable can be directly used 

for obtaining the generalized T-stresses by using generalized constitutive relations that 

without additional approximation in the post-process procedure.    

 

 

 

 

 

 

 

   

Figure 3.1 Schematic of crack boundary and local coordinate system used for 

calculating generalized T-stress  
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CHAPTER 4 

NUMERICAL RESULTS AND DISCUSSIONS 

This chapter presents numerical results of the generalized T-stresses obtained from the 

proposed technique. Computational performance including the accuracy and 

convergence is carefully investigated through various examples involving both linear 

single and couple-field media. Various type of loading conditions (e.g., uniformly 

distributed crack-face loading, linearly distributed crack-face loading, and uniform 

remote loading) and planar, non-planar and multiple cracks are considered in the 

numerical study to demonstrate the capability and versatility of the technique. As the 

essential step in the verification of the integral formulation and the implementation of 

solution procedure and post-process algorithm for determining the generalized T-stress, 

results for a penny-shaped crack in both single and couple-field media are obtained and 

then compared with reliable benchmark solutions. Then, results for more complicated 

fracture problems involving non-planar and multiple cracks are reported.  

 In the numerical study, standard 6-node and 8-node isoparametric C0-elements 

are employed to discretize both the sum of and jump in the crack-face generalized 

displacement on the majority of the crack surface whereas standard 9-node 

isoparametric C0-elements and special 9-node crack-tip elements are utilized to 

discretize, respectively, the sum of and jump in the crack-face generalized displacement 

in a region adjacent to the crack front. A series of meshes, with significant difference 

of element size, is adopted to investigate the convergence of numerical solutions. Three 

representative material models including a transversely isotropic linear elastic material 

(Mat-1), a transversely isotropic linear piezoelectric material (Mat-2), and a 

transversely isotropic linear piezoelectromagnetic material (Mat-3) with all material 

parameters given in Tables 4.1-4.3 are utilized in the numerical simulations.    
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Table 4.1 Material parameters of a representative transversely isotropic linear elastic 

material (Mat-1) used in numerical study (Watanavit and Rungamornrat, 2017) 

Elastic constants 

( x 109 Pa) 

1111E  126.00 

1122E  55.00 

1133E  53.00 

3333E  117.00 

1313E  35.30 

 

Table 4.2 Material parameters of a representative transversely isotropic linear 

piezoelectric material (Mat-2) used in numerical study (Phongtinnaboot et al., 2011) 

Elastic constants 

( x 109 Pa) 

1111E  126.00 

1122E  55.00 

1133E  53.00 

3333E  117.00 

1313E  35.30 

Piezoelectric constants 

(C/m2) 

1134E  -6.50 

3334E  23.30 

1314E  17.00 

Dielectric permittivities 

( x 10-9 C/(Vm)) 

1414E−  15.10 

3434E−  13.00 
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Table 4.3 Material parameters of a representative transversely isotropic linear 

piezoelectromagnetic material BaTiO3-CoFe2O4 (Mat-3) used in numerical study 

(Sladek et al., 2008) 

Elastic constants 

( x 109 Pa) 

1111E  226.00 

1122E  125.00 

1133E  124.00 

3333E  216.00 

2323E  44.00 

Piezoelectric constants 

(C/m2) 

1134E  -2.20 

3334E  9.30 

1314E  5.80 

Piezomagnetic constants 

(N/Am) 

1135E
 290.00 

3335E
 350.00 

1315E
 275.00 

Magneto-electric coefficients 

( x 10-12 Ns/(Am)) 

1415E−
 5.37 

3435E−
 2737.50 

Dielectric permittivities 

( x 10-10 C/(Vm)) 

1414E−  56.40 

3434E−  63.50 

Magnetic permittivities 

( x 10-6 Ns2/(C2)) 

1515E−  297.00 

3535E−  83.50 

4.1 VERIFICATION 

In order to verify the proposed technique, simple crack problems with available 

analytical solution are considered. From an extensive literature survey, it has been 

found that the closed form solutions of the generalized T-stresses of an isolated penny-

shaped crack were reported by Rungamornrat and Pinitpanich (2016) for a transversely 

isotropic linear elastic infinite medium and by Rungamornrat et al. (2018) for a 

transversely isotropic linear piezoelectric medium. For the case of a penny-shaped 

crack embedded in a transversely isotropic linear piezoelectromagnetic medium, the 
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complete field was obtained by Zhao et al. (2006) and such results can then be used to 

directly post-process for the generalized T-stress via the technique proposed by 

Rungamornrat and Pinitpanich (2016) and Rungamornrat et al. (2018). Solutions for 

those three cases constitute the sufficient basis for the verification of the present 

technique. 

Consider a penny shaped crack of radius a  embedded in a whole space with the 

axis of material symmetry directing perpendicular to the plane of the crack as shown in 

Figure 4.1. The crack front is parameterized by 

1 2 3cos ,  sin ,  0x a x a x = = =                 (4.1) 

where  0,2   denotes the angular position. The whole space is made of Mat-1, 

Mat-2 or Mat-3 with material parameters given in Tables 4.1-4.3.  

 

 

 

 

 

 

 

Figure 4.1 Schematic of a penny-shaped crack of radius a  embedded in a couple-field 

whole space 

Following six loading conditions are considered: (i) uniformly distributed 

normal mechanical crack-face traction 3 3 0t t + −= − =  (see Figure 4.2(a)), (ii) linearly 

distributed normal mechanical crack-face traction 3 3 0 1(1 / )/2t t x a+ −= − = +  (see Figure 
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4.2(b)), (iii) nonlinearly distributed normal mechanics crack-face traction 

2

3 3 0 1(1 / ) /4t t x a+ −= − = +  (see Figure 4.2(c)), (iv) uniform remote mechanical loading 

33 11 02 2   = =  (see Figure 4.2(d)), (v) uniform remote electrical loading 

34 14 02 2d  = =  (see Figure 4.2(e)), and (vi) combined uniform remote mechanical-

electro-magnetic loading in 
3x -direction 33 0 ,  = 34 0 ,d  = 35 0b  =  (see Figure 

4.2(f)) where 
6 2

0 1 10 N/ m =  ,
3 2

0 1 10 /d C m−=   and 
3

0 1 10 /b N Am−=   are taken in the 

numerical study. The loading conditions (i)-(iv) are applied for the whole space made 

of Mat-1, the loading conditions (i)-(v) are applied for the whole space made of Mat-2, 

and the loading conditions (i), (iv) and (vi) are applied for the whole space made of 

Mat-3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Schematic of six loading conditions considered in the analysis of a penny-

shaped crack in a couple-field whole space. 
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In the analysis, three meshes of a penny-shaped crack shown in Figure 4.3 are 

adopted; in particular, Mesh-1 contains 8 elements with 4 crack-tip elements, Mesh-2 

contains 36 elements with 12 crack-tip elements and Mesh-3 contains 144 elements 

with 24 elements. 

 

 

 

  

 

Figure 4.3 Schematic of three meshes of a penny-shaped crack in this present study. 

4.1.1 Uniformly distributed normal mechanical crack-face traction  

For this particular loading condition, the whole space made of elastic, piezoelectric and 

piezoelectromagnetic materials (i.e., Mat-1, Mat-2 and Mat-3) are considered. 

Numerical results for the generalized T-stresses are normalized by the existing exact 

solution (e.g., Rungamornrat and Pinitpanich, 2016; Rungamornrat et al., 2018; and 

constructed based on the work of Zhao et al., 2006) and then reported in Table 4.4 for 

all three meshes. Obtained results indicate that for all three types of materials 

considered, only 11T  and 33T  are non-zero and they constant along the crack front due to 

the axisymmetry. In addition, numerical results generated by the proposed technique 

exhibit excellent agreement with the exact solutions and are slightly dependent on the 

level of mesh refinement. Clearly, the difference, in comparison with the exact solution, 

does not exceed 0.25% for results obtained from the Mesh-1 and 0.05% for those 

obtained from the Mesh-2 and Mesh-3. 
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Table 4.4 Normalized generalized T-stress components 
 11

T  and 33
T  for a penny 

shaped crack subjected to uniformly distributed normal mechanical crack-face traction 

Mesh 

Mat-1 Mat-2 Mat-3 

     

11

11

e x a c t

T

T
 

     

33

33

e x a c t

T

T
 

     

11

11

e x a c t

T

T
 

     

33

33

e x a c t

T

T
 

     

11

11

e x a c t

T

T
 

     

33

33

e x a c t

T

T
 

1 0.9980 1.0008 0.9975 1.0009 0.9983 1.0004 

2 0.9996 0.9997 0.9995 0.9997 0.9996 0.9997 

3 0.9996 0.9999 0.9995 0.9999 0.9995 0.9998 

4.1.2 Linearly distributed normal mechanical crack-face traction  

For this loading case, results are obtained for the whole space made of Mat-1 and Mat-

2. Only the mechanical T-stress components 11 33 13( , , )T T T  are non-zero for both types 

of materials and they vary as a function of angular position along the crack front. 

Computed T-stress components from the three meshes are first normalized by 0  and 

then reported versus the angular position   in Figure 4.4 for the elastic case and Figure 

4.5 for the piezoelectric case. As can be seen from this set of results, the present 

technique yields solutions of excellent agreement with the benchmark solutions (e.g., 

Rungamornrat and Pinitpanich, 2016; Rungamornrat et al., 2018) for all three meshes. 

Results are nearly indistinguishable from the reference solution although the relatively 

coarse mesh containing few elements is employed. In addition, the generalized T-stress 

components are quite weak dependent on the material constituting the body; in 

particular, both the values and distribution of the generalized T-stress along the crack 

front are not significantly different. 
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Figure 4.4 Normalized generalized T-stress components 11 33
T T,  and 13

T  for a penny-

shaped crack embedded in a linear elastic whole space subjected to linearly distributed 

normal mechanical crack-face traction 
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Figure 4.5 Normalized generalized T-stress components 11 33
T T,  and 13

T  for a penny-

shaped crack embedded in a linear piezoelectric whole space subjected to linearly 

distributed normal mechanical crack-face traction 
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4.1.3 Nonlinearly distributed normal mechanical crack-face traction  

For this particular loading case, the applied normal mechanical crack-face traction 

assumes the parabolic distribution along the 1x -direction and both types of materials 

constituting the medium (i.e., Mat-1 and Mat-2) are considered. Similar to the previous 

case, only the mechanical T-stress components 11 33 13( , , )T T T  are non-zero for both 

elastic and piezoelectric cases and they vary along the crack front. Computed results 

from the three meshes are normalized and reported, along with the exact solutions (e.g., 

Rungamornrat and Pinitpanich , 2016; Rungamornrat et al., 2018), in Figure 4.6 for 

Mat-1 and Figure 4.7 for Mat-2. As can be seen from the numerical solutions, the 

proposed technique can capture the variation of the generalized T-stress components 

along the crack front with the high accuracy even when the coarse mesh is utilized. This 

should result directly from the use of special crack-tip elements to model the near-front 

relative crack-face generalized displacement together with the direct means to post-

process the generalized T-stress components from the gradient of the sum of the 

generalized displacement along the crack front. 
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Figure 4.6 Normalized generalized T-stress components 11 33
T T,  and 13

T  for a penny-

shaped crack embedded in a linear elastic whole space subjected to nonlinear 

distributed normal mechanical crack-face traction 
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Exact solution
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Figure 4.7 Normalized generalized T-stress components 11 33
T T,  and 13

T  for a penny-

shaped crack embedded in a linear piezoelectric whole space subjected to nonlinear 

distributed normal mechanical crack-face traction 

4.1.4 Uniform remote mechanical loading  

Next, consider the action of the uniform remote mechanical loading on the value and 

distribution of the generalized T-stress for a penny-shaped crack embedded in elastic 

(Mat-1), piezoelectric (Mat-2), and piezoelectromagnetic (Mat-3) medium. Numerical 

results obtained from the three meshes are reported in Figures 4.8, 4.9, and 4.10 for the 

generalized T-stress components 11 33 13, and  T T T , respectively. It is seen that results 

generated by the proposed technique converge to the analytical solutions (e.g., 

Rungamornrat and Pinitpanich , 2016; Rungamornrat et al., 2018; and constructed 

based on the work of Zhao et al., 2006) and, in addition, results from the three meshes 

are almost indistinguishable and those obtained from the coarsest mesh are slightly 

different from the reference solutions. In particular, it is found that errors of the solution 

from Mesh-1 are less than 0.5% and those associated with the Mesh-2 and  
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Mesh-3 are less than 0.3%. As also clear from obtained results, the uniform remote 

mechanical loading does not induce the electrical and magnetic T-stress although the 

medium is made of the coupled-field materials. By comparing results for different 

material models, it is found that the mechanical T-stress component 13T  are identical 

whereas the remaining two components of the mechanical T-stress (i.e., 11T  and 33T ) 

possess the same variation characteristic along the crack front but slight difference in 

magnitude. 
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Figure 4.8 Normalized generalized T-stress component 11
T  for a penny-shaped crack 

embedded in a linear whole space subjected to uniform remote mechanical loading 
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Figure 4.9 Normalized generalized T-stress component 33
T  for a penny-shaped crack 

embedded in a linear whole space subjected to uniform remote mechanical loading 
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Figure 4.10 Normalized generalized T-stress component 13
T  for a penny-shaped crack 

embedded in a linear whole space subjected to uniform remote mechanical loading 
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4.1.5 Uniform remote electrical loading  

Here, a penny-shaped crack embedded within the piezoelectric whole space (Mat-2) 

under the uniform remote electrical loading 34 14 02 2d  = =  is examined. Non-zero 

generalized T-stress components obtained from the three meshes are normalized and 

reported in Figure 4.11 together with the analytical solutions (e.g., Rungamornrat et al., 

2018). Again, the proposed technique yields the converged numerical solution of very 

high accuracy when compared with the reference solutions; in particular, results from 

the Mesh-1 show only slight difference from the exact solutions whereas those from the 

Mesh-2 and Mesh-3 are nearly identical to the benchmark solution. For this particular 

loading case, the mechanical T-stress component 13T  vanishes identically; the non-zero 

mechanical T-stress components 11T
 
and 

33T are independent of the position along the 

crack front; and the non-zero electrical T-stress components 
14T

 
and 

34T  are a function 

of position along the crack front. 
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Figure 4.11 Normalized generalized T-stress components 
11 33 14

T T T, ,  and 
34

T  for a 

penny-shaped crack embedded in a linear piezoelectric whole space subjected to 

uniform remote electrical loading  

0

T


 

/   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

48 

4.1.6 Combined uniform remote mechanical-electro-magnetic loading 

As the final case, consider a penny-shaped crack in a linear piezoelectromagnetic whole 

space (Mat-3) subjected to the combined remote mechanical-electro-magnetic loading 

33 0 ,  = 34 0 35 0,d b  = = . For this particular case, the mechanical T-stress component 

13
T , the electrical T-stress component 

14
T  and 

34
T  , and the magnetic T-stress 

component 
15

T
 
and 

35
T  identically vanish along the crack front whereas the non-zero 

mechanical T-stress components 
11

T  and 
33

T  are constant along the crack front due to 

the axisymmetry. Computed T-stress components 
11

T  and 
33

T  obtained from Mesh-1, 

Mesh-2 and Mesh-3 are normalized by the exact solution (constructed based on the 

work of Zhao et al., 2006) and then reported in Table 4.5. As can be seen from this set 

of results, the proposed technique can capture the solution with the high accuracy even 

when the coarsest mesh is employed in the discretization. In particular, the discrepancy 

between the computed and reference solutions is less than 0.2% for the Mesh-1 and 

0.1% for the Mesh-2 and Mesh-3.    

Table 4.5 Normalized generalized T-stress components 
11

T  and 
33

T  for a penny-shaped 

crack embedded in a linear piezoelectromagnetic whole space subjected to combined 

uniform mechanical-electro-magnetic loading 

Normalized 

generalized T-stress 

Mesh-1 Mesh-2 Mesh-3 

     

11 11/ e x a c tT T  1.0003 0.9993 0.9991 

     

33 33/ e x a c tT T  0.9986 0.9994 0.9992 
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4.2 CAPABILITY OF PROPOSED TECHNIQUE 

While the convergence and accuracy of the proposed technique have been extensively 

verified with reliable benchmark solutions, all boundary value problems considered in 

such numerical experiments are limited to relatively simple scenarios. In order to 

further demonstrate the computational capability and versatility of the developed 

technique, more complex problems involving non-planar and multiple cracks are also 

investigated in this section. It should be remarked that according to the complexity of 

the boundary value problems, the exact or analytical solutions for all representative 

examples have not been found. A series of meshes with the significant difference in 

mesh size is utilized in the numerical study to ascertain the convergence of numerical 

solutions. 

4.2.1 Inclined elliptical crack   

First, consider an inclined elliptical crack that embedded in a linear whole space made 

of elastic (Mat-2), piezoelectric (Mat-2), and piezoelectromagnetic (Mat-3) materials 

as shown in Figure 4.12. The crack is oriented with respect to the reference Cartesian 

coordinate system such that the crack front can be parameterized by 

1 2 3cos cos ,  sin ,  cos sinx a x b x a    = = =                                                     (4.2) 

where a  and b  denote the major and minor semi-axes;  0,2   denotes the angular 

position along the crack front; and   denotes the angle between the 
3x -axis and the 

unit normal vector to the surface of the crack. The axis of material symmetry is assumed 

directing along the 
3x -axis. 
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Figure 4.12 Schematic of an inclined elliptical crack embedded in a linear whole space 

In the analysis, the aspect ratio / 2b a = , the orientation angle 45 =  , and 

three meshes adopted in Figure 4.13 are employed. In particular, the Mesh-1, Mesh-2 

and Mesh-3 contain 8, 36, and 144 elements with 4, 12, and 24 special crack-tip 

elements, respectively. 

 

 

 

 

Figure 4.13 Three meshes of an inclined elliptical crack used in numerical study 
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Figure 4.14 Schematics of cracked whole space subjected to (a) uniform remote 

mechanical loading and (b) uniform remote electrical loading  

4.2.1.1 Uniform remote mechanical loading   

First, consider the cracked whole space subjected only to the uniform remote 

mechanical loading 33 11 02 2   = =  with 
6 2

0 1 10 N/ m =   (see Figure 4.14(a)). Due 

to the nonalignment between the normal to the crack surface and the axis of material 

symmetry, all components of the generalized T-stress are non-zero and vary as a 

function of position along the crack front. The computed mechanical T-stress 

components 
11 33 13, ,T T T  obtained from the three meshes for three types of materials are 

reported in Figures 4.15, 4.16, and 4.17, respectively. Besides the good convergence 

behavior of the numerical solutions with only weak dependence on the level of mesh 

refinement, the variation of the mechanical T-stress components for all three-types of 

materials are similar and their values are only slightly different. Results for the 

electrical T-stress components 
14 34,T T  are reported in Figures 4.18 and 4.19, 

respectively for both piezoelectric and piezoelectromagnetic materials. Similar to the 

mechanical T-stress components, the good convergence behavior is observed.  
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However, for this particular case, the electrical T-stress components obtained 

from the two material models are significantly different. The computed magnetic T-

stress components 
15 35,T T  for cracked whole space made of the piezoelectromagnetic 

material are also reported in Figure 4.20 for all three meshes. Similar to the previous 

case, the convergence of numerical solutions is confirmed and, in addition, only coarse 

meshes with few degrees of freedom can be utilized to obtain sufficiently accurate 

generalized T-stress components. 
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Figure 4.15 Normalized mechanical T-stress component 
11T  of inclined elliptical crack 

subjected to uniform remote mechanical loading for Mat-1, Mat-2 and Mat-3 
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Figure 4.16 Normalized mechanical T-stress component 

33T  of inclined elliptical 

crack subjected to uniform remote mechanical loading for Mat-1, Mat-2 and Mat-3 
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Figure 4.17 Normalized mechanical T-stress component 

13T  of inclined elliptical 

crack subjected to uniform remote mechanical loading for Mat-1, Mat-2 and Mat-3 
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Figure 4.18 Normalized electrical T-stress component 

14T  of inclined elliptical crack 

subjected to uniform remote mechanical loading for Mat-2 and Mat-3 
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Figure 4.19 Normalized electrical T-stress component 

34T  of inclined elliptical crack 

subjected to uniform remote mechanical loading for Mat-2 and Mat-3 
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Figure 4.20 Normalized magnetic T-stress components 

15T  and 
35T  of inclined elliptical 

crack subjected to uniform remote mechanical loading for Mat-3 

4.2.1.2 Uniform remote electrical loading 

Next, consider the cracked whole space made of Mat-2 or Mat-3 and subjected only to 

the uniform remote electrical loading 34 14 02 2d  = =  with 
3 2

0 1 10 /C m −=   (see 

Figure 4.14(b)). Similar to the previous loading case, all components of the generalized 

T-stress are non-zero and vary as a function of position along the crack front. The 

computed mechanical and electrical T-stress components 
11 33 13, ,T T T , 

14 34,  T T  for both 

types of materials are reported in Figures 4.21-4.25, respectively, whereas those for the 

magnetic T-stress components 
15 35,  T T  for Mat-3 are reported in Figure 4.26. As clearly 

indicated from results generated from three different meshes, the proposed technique 

yields converged solutions and also exhibits the weak dependence on the mesh size. It 

is worth noting that when the cracked whole space is  
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subjected to the uniform remote electrical loading, the mechanical T-stress components 

for both types of materials are significantly different (see Figures 4.21-4.23) but the 

electrical T-stress components are almost independent of the material properties (see 

Figures 4.24-4.25). In addition, the presence of the magnetic coupling effect also 

induces the non-zero magnetic T-stress components although there is no magnetic 

loading applied. 
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Figure 4.21 Normalized mechanical T-stress component 

11T  of inclined elliptical crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.22 Normalized mechanical T-stress component 
33T  of inclined elliptical crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.23 Normalized mechanical T-stress component 

13T  of inclined elliptical crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.24 Normalized electrical T-stress component 

14T  of inclined elliptical crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3  
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Figure 4.25 Normalized electrical T-stress component 

34T  of inclined elliptical crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.26 Normalized magnetic T-stress components 

15 35,T T  of inclined elliptical 

crack subjected to uniform remote electrical loading for Mat-3 

4.2.2 Spherical cap crack 

As a representative example to demonstrate the capability of the proposed technique to 

treat non-planar cracks, consider a spherical cap crack of radius a  embedded in a linear 

whole space as shown in Figure 4.27. The crack is oriented such that its boundary (i.e., 

the crack front) can be parameterized by 

   1 2 3
sin cos ,  sin sin ,  cos ,  0,2 ,  0,x a x a x a        = = =                          (4.3) 

where   denotes the half-subtended angle of a spherical crack surface and   

represents an angular position of point along the crack front. The medium is made of 

either elastic (Mat-1), piezoelectric (Mat-2), or piezoelectromagnetic (Mat-3) material 

with the axis of material symmetry directing along the 
3

x  coordinate direction. In the 

numerical study, the half subtended angle 30 =  is considered and three meshes as 

shown in Figure 4.29 are adopted. In particular, the Mesh-1, Mesh-2 and Mesh-3 consist 

of 16, 64 and 208 elements with 8, 16 and 32 special crack-tip elements, respectively. 
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Figure 4.27 Schematic of a spherical cap crack with crack radius a  and half 

subtended angle   embedded in a linear whole space 

 

 

 

 

 

 

 

 

Figure 4.28 Three meshes of a spherical cap crack adopted in numerical simulations 
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Figure 4.29 Schematics of a cracked whole space subjected to (a) uniform remote 

mechanical loading and (b) uniform remote electrical loading 

4.2.2.1 Uniform remote mechanical loading  

First, consider the cracked whole space made of Mat-1, Mat-2 or Mat-3 and subjected 

to the uniform remote mechanical loading 
33 11 0

2 2   = =  with 
6 2

0
1×10 N/m =  as 

shown schematically in Figure 4.29 (a). Computed generalized T-stress components 

obtained for all types of materials and from three different meshes are reported in 

Figures 4.30-4.35. As expected, the proposed technique yields the converged solutions 

for all generalized T-stress components and all types of materials; in particular, the 

weak dependence on the mesh size of the computed solutions is clearly observed except 

for the magnetic T-stress components 15
T  where results obtained from the coarsest mesh 

is significantly different from those generated by the finest mesh. In addition, the 

mechanical T-stress components obtained for three material models are nearly identical 

whereas the electrical T-stress components are quite different for both Mat-2 and Mat-

3. It should also point out that the coupling effect through the constitutive relations 

induces both electrical and magnetic T-stress components although the remote loading 

is purely mechanical.  
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Figure 4.30 Normalized mechanical T-stress component 11T  of a spherical cap crack 

subjected to uniform remote mechanical loading for Mat-1, Mat-2 and Mat-3 
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Figure 4.31 Normalized mechanical T-stress component 33T  of a spherical cap crack 

subjected to uniform remote mechanical loading for Mat-1, Mat-2 and Mat-3 
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Figure 4.32 Normalized mechanical T-stress component 13T  of a spherical cap crack 

subjected to uniform remote mechanical loading for Mat-1, Mat-2 and Mat-3 
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Figure 4.33 Normalized electrical T-stress component 14T  of a spherical cap crack 

subjected to uniform remote mechanical loading for Mat-2 and Mat-3 
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Figure 4.34 Normalized electrical T-stress component 34T  of a spherical cap crack 

subjected to uniform remote mechanical loading for Mat-2 and Mat-3 
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Figure 4.35 Normalized magnetic T-stress components 15 35,T T  of a spherical cap crack 

subjected to uniform remote mechanical loading for Mat-3 

34 1111

0 3334

T E

E
 

/   

1111

0 3335

T E

E
 

/   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

65 

4.2.2.2 Uniform remote electrical loading 

Consider, next, the cracked whole space that is made of either Mat-2 or Mat-3 and 

subjected to the uniform remote electrical loading 
34 14 0

2 2d  = =  with 

3 2

0
1×10 C/md −=  as illustrated in Figure 4.29 (b). All generalized T-stress components 

for this loading case are non-zero and their values obtained from the proposed technique 

for all three meshes are shown in Figures 4.36-4.41. Similar to all cases presented 

previously, the convergence of numerical solutions is confirmed and relatively coarse 

meshes can be used to obtain results comparable to the converged solution. Obtained 

results also indicate that when the cracked whole space is subjected to the uniform 

remote electrical loading, the type of coupled-field materials strongly influences the 

values of mechanical T-stress components but insignificantly affects the electrical T-

stress components. It is also evident that electro-mechanical and magneto-electro-

mechanical couplings via the constitutive relations induce both the mechanical and 

magnetic responses although the excitation is purely electrical. 
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Figure 4.36 Normalized mechanical T-stress component 11T  of a spherical cap crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.37 Normalized mechanical T-stress component 33T  of a spherical cap crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.38 Normalized mechanical T-stress component 13T  of a spherical cap crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.39 Normalized electrical T-stress component 14T  of a spherical cap crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.40 Normalized electrical T-stress component 34T  of a spherical cap crack 

subjected to uniform remote electrical loading for Mat-2 and Mat-3 
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Figure 4.41 Normalized magnetic T-stress components 15 35,T T  of a spherical cap crack 

subjected to uniform remote electrical loading for Mat-3 

4.2.3 A pair of penny- shaped cracks 

To finally demonstrate the capability of the proposed technique to treat multiple cracks, 

let us consider a pair of identical penny-shaped cracks of radius a  embedded in a linear 

whole space made of Mat-1, Mat-2, or Mat-3 as shown in Figure 4.42. The two cracks 

are oriented such that the unit normal vectors to both crack surfaces direct along the 3
x

-axis and the center of each crack is located at (0,0, )d−  and (0,0, )d . The crack front 

of the two cracks can be described by (4.2) except that the coordinate 3
x  changes to d  

and d−  for the upper and lower cracks, respectively. The axis of material symmetry is 

assumed directing along the 3
x  coordinate direction and the medium is subjected to a 

uniform remote mechanical loading in the 3
x  direction, i.e., 33 0

  = .  Here, the 

interaction between the two cracks is investigated by varying the ratio d / a  and results 

are then compared with those of a single penny shaped crack in which the exact 

solutions for the generalized T-stress are available or can be readily constructed (e.g., 

Rungamornrat and Pinitpanich, 2016; Rungamornrat et al., 2018; and constructed based 
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on the work of Zhao et al., 2006). It is worth noting that due to the axisymmetry, the 

generalized T-stress components are constant along the crack front. 

 

 

 

 

 

 

 

 

Figure 4.42 Schematic of a pair of identical penny-shaped cracks in a linear whole 

space under a uniform remote mechanical loading in 3
x  direction 

In the numerical study, three different meshes shown in Figure 4.3 are adopted 

for both upper and lower cracks. Results for the case 1d / a =  are obtained for the three 

meshes and three material models and the non-zero mechanical T-stress components 

are then reported in Table 4.6. It is clear that as the mesh is refined from the Mesh-1 to 

the Mesh-3, the converged solutions for the non-zero generalized T-stress components 

are obtained. This implies that the Mesh-3 is sufficiently refined and can be used to 

generate results in the following parametric study. 
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Table 4.6 Normalized mechanical T-stress components 11
T  and 33

T  for a pair of 

penny-shaped cracks in linear whole space subjected to uniform remote mechanical 

loading in 3
x  direction  

Mesh 

Mat-1 Mat-2 Mat-3 

 

11

Ref

11

T

T
 

 

33

Ref

33

T

T
 

 

11

Ref

11

T

T
 

 

33

Ref

33

T

T
 

 

11

Ref

11

T

T  
 

33

Ref

33

T

T  

1 1.0045 0.8562 0.9819 0.8571 0.9961 0.8678 

2 0.9987 0.8588 0.9773 0.8586 0.9905 0.8699 

3 0.9968 0.8584 0.9755 0.8581 0.9885 0.8693 

To investigate the influence of the distance between the two cracks on the value 

of the generalized T-stress component, results are generated using the Mesh-3 for 

various values of the aspect ratio /d a  and then reported together with the results for 

the single crack in Figures 4.43-4.46 for the generalized T-stress components 11
T , 33

T , 

14
T , and 15

T , respectively. As the ratio /d a  increases, the mechanical T-stress 

components 11
T  and 33

T  decrease rapidly in magnitude to attain the minimum value 

and then gradually increase in magnitude to approach the solution of the single crack 

when / 5d a  . For the electric and magnetic T-stress components 14
T  and 15

T , as the 

ratio /d a  increases, they monotonically decrease in magnitude and then approach zero 

(the solution of the single crack) when / 3d a  . 
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Figure 4.43 Normalized mechanical T-stress component 11T  of a pair of penny-shaped 

cracks under uniform remote mechanical loading in 3
x direction for Mat-1, Mat-2, and 

Mat-3 
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Figure 4.44 Normalized mechanical T-stress component 33T  of a pair of penny-shaped 

cracks under uniform remote mechanical loading in 3
x direction for Mat-1, Mat-2, and 

Mat-3 
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Figure 4.45 Normalized electric T-stress component 14T  of a pair of penny-shaped 

cracks under uniform remote mechanical loading in 3
x direction for Mat-2 and Mat-3 
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Figure 4.46 Normalized magnetic T-stress component 15T  of a pair of penny-shaped 

cracks under uniform remote mechanical loading in 3
x direction for Mat-3 
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CHAPTER 5 

CONCLUSIONS AND REMARKS 

An accurate and efficient numerical technique based upon a weakly singular, boundary 

integral equation method together with the direct post-process procedure has been 

successfully implemented for the analysis of the generalized T-stress components for 

isolated cracks in a whole space made of linear coupled-field materials. The formulation 

and implementation have been established in a general framework allowing various 

scenarios (e.g., various classes of material models, general crack geometries, and 

general loading conditions) to be handled in a unified fashion. A pair of weakly 

singular, weak-form integral equations, one governing the jump in the crack-face 

generalized displacement and the other governing the gradient of the sum of the crack-

face generalized displacement, has been derived and then used to form the key 

governing equations. In addition to its unified feature, this pair of integral equations 

contains only weakly singular kernels allowing all involved integrals to be interpreted 

in the sense of Riemann sum and continuous basis functions to be employed in the 

solution approximation.  

 A well-known symmetric Galerkin boundary element method has been 

implemented within the context of weakly singular formulation to solve the weak-form 

integral equation for the crack-face generalized traction. In addition to the careful 

treatment of the numerical integration and evaluation of all involved kernels, special 

near-front approximation has been utilized to enhance the solution quality of the jump 

in the crack-face generalized displacement in the neighborhood of the crack front. The 

gradient of the sum of the crack-face generalized displacement has been solved 

separately, once the jump in the crack-face generalized displacement was determined, 

from the remaining weak-form integral equation for the crack via a standard Galerkin 

technique. An explicit formula has been established, based on the asymptotic near-front 

field expansion together with the constitutive laws, for extracting the generalized T-

stress directly in terms of the gradient of the sum of the crack-face generalized 

displacement along the crack front. 
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 Extensive numerical experiments together with benchmarking with reliable 

reference solutions for various cases have confirmed the validity of the integral 

formulation, solution procedure and post-process algorithm. From the convergence 

study via a series of meshes, it has been found that the proposed technique yields the 

converged numerical solutions and accurate results can be obtained even when 

relatively coarse meshes are adopted in the discretization. The highly accurate feature 

of the present technique stems directly from the use of special crack-tip elements to 

improve the approximation of the near-front relative crack-face generalized 

displacement and the post-process formula for extracting the generalized T-stress 

directly in terms of primary unknowns solved from the governing integral equations. 

The computational capability and versatility of the technique to treat boundary value 

problems with general data (e.g., non-planar and multiple cracks, various types of linear 

coupled-field materials, general loading conditions, etc.) have also been elucidated via 

a selected set of representative scenarios.   

It should be remarked that the computational performance of the proposed 

technique in comparison with other numerical procedures such as those proposed by 

Rungamornrat et al. (preparation for publication) for cracks in elastic media and 

Subsathapol et al. (2014) and Limwibul et al. (2016) for cracks in piezoelectric media 

is still required further investigation. In addition, the framework of the proposed 

technique is still limited to isolated cracks in an infinite media. The potential extension 

of the present technique to treat cracks in a finite domain should significantly enhance 

its capability to handle more practical problems. 
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