สารออกฤทธิ์ชีวภาพที่มีฤทธิ์ต้านการเปลี่ยนสภาพของเซลล์สลายกระดูกและกลไกการออกฤทธิ์

นางสาวสุพัตรา ชวลิตพงษ์

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์นี้แสดงเป็นภาษาไทย 2554 ที่ให้บริการในคลังบัญญัติการรูปแบบ (CUIR)
เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งค้านทางบันทิสรักษา

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาโทวิทยาศาสตร์คุณภูมิบัณฑิต
สาขาวิชาเทคโนโลยีชีวภาพ
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2560
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย
BIOACTIVE COMPOUNDS WITH AN INHIBITORY ACTIVITY AGAINST
OSTEOCLAST DIFFERENTIATION AND MECHANISMS

Miss Supatta Chawalitpong

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Biotechnology
Faculty of Science
Chulalongkorn University
Academic Year 2017
Copyright of Chulalongkorn University
Thesis Title: BIOACTIVE COMPOUNDS WITH AN INHIBITORY ACTIVITY AGAINST OSTEOCLAST DIFFERENTIATION AND MECHANISMS

By: Miss Supatta Chawalitpong

Field of Study: Biotechnology

Thesis Advisor: Associate Professor Tanapat Palaga, Ph.D.

Thesis Co-Advisor: Professor Apichart Suksamrarn, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Science
(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

Chairman
(Associate Professor Chulee Yompakdee, Ph.D.)

Thesis Advisor
(Associate Professor Tanapat Palaga, Ph.D.)

Thesis Co-Advisor
(Professor Apichart Suksamrarn, Ph.D.)

Examiner
(Associate Professor Chanpen Chanchao, Ph.D.)

Examiner
(Associate Professor Aphichart Karnchanatat, Ph.D.)

External Examiner
(Professor Narattaphol Charoenphandhu, M.D., Ph.D.)
สุพัตรา ชวลิตพงษ์: สารออกฤทธิ์ทางชีวภาพที่มีฤทธิ์ต้านการเปลี่ยนสภาพของเซลล์สลายกระดูกและกลไกการออกฤทธิ์ (BIOACTIVE COMPOUNDS WITH AN INHIBITORY ACTIVITY AGAINST OSTEOCLAST DIFFERENTIATION AND MECHANISMS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร. ธนภัทร นวลสกุล อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ.ดร. อธิชาติ สุขสัตย์ หน้าอ.

โรคกระดูกพรุนเป็นปัญหาสุขภาพที่สำคัญอย่างหนึ่งของสังคมผู้สูงอายุ สาเหตุหลักของภาวะดังกล่าวเกิดจากความไม่สมดุลของเซลล์ที่ทำหน้าที่สร้างกระดูก (osteoblast) และเซลล์ที่ทำหน้าที่สลายกระดูก (osteoclast) การลดลงของมวลกระดูกในผู้สูงอายุนำมาซึ่งความเสี่ยงในการแตกหักของกระดูก จุดประสงค์ของการศึกษาครั้งนี้คือการคัดกรองสารออกฤทธิ์ทางชีวภาพที่มีฤทธิ์ต้านการเปลี่ยนสภาพของเซลล์สลายกระดู

ในระดับ in vitro ใช้เซลล์มาจากกระดูกที่ถูกกระตุ้นด้วย receptor activator of nuclear factor-κB ligand (RANKL) DHPH มีฤทธิ์ในการยับยั้งการเปลี่ยนสภาพของเซลล์สลายกระดูกโดยยับยั้งการเกิด TRAP-positive multinucleated cells (TRAP+MNCs) ที่ระดับความเข้มข้นน้อยกว่าหนึ่งในสี่ (IC50 325±1.37 นาโนโมลาร์) การยับยั้งการเปลี่ยนสภาพของเซลล์สลายกระดูกในระดับ in vitro ของสารนี้ต่ำกว่า RANKL แต่ไม่ส่งผลกระทบต่อวิถีสัญญาณ MAPKs และ NF-κB โดยผลของสารดังกล่าวส่งผลต่อระดับ tran

cription factor (TF) ที่เกี่ยวข้องกับการเปลี่ยนสภาพเป็นเซลล์สลายกระดูกไม่ส่งผลต่อการกระตุ้นของสัญญาณ MAPKs และ NF-κB โดยส่งผลต่อระดับโปรตีนของ NFATc1 และ c-Fos ซึ่งมีความสำคัญในการเปลี่ยนสภาพเป็นเซลล์สลายกระดูก DHPH ลดการกระกร่อนกระดูก (bone resorption) บนเนื้อฟัน (Dentin slices) นอกจากนี้สาร DHPH ยังมีผลในการเพิ่มพื้นที่ของเนื้อกระดูก (bone area) และพื้นที่ของกระดูกชนิด trabecular (trabecular area) ในกระดูกของหนูสายพันธุ์ SAMP6 ที่มีภาวะการกระกร่อนกระดูก การแสดงออกของ ibp ซึ่งถูกใช้เป็นภาระรหัสโปรตีน bone sialoprotein ในขณะที่สาร DHPH ยังเพิ่มการแสดงออกของ ibp.

ผลการยับยั้งดังกล่าวสอดคล้องกับการลดลงของปริมาณการกระกร่อนกระดูกในเนื้อฟัน (Dentin slices) ในการศึกษาฤทธิ์ในกระดูกในระดับ in vivo โดยใช้หนูทดลองสายพันธุ์ Senescence-accelerated mouse prone 6 (SAMP6) พบว่าสาร DHPH ยังมีผลในการเพิ่มพื้นที่ของเนื้อกระดูก (bone area) และพื้นที่ของกระดูกชนิด trabecular (trabecular area) ในกระดูกของหนูสายพันธุ์ SAMP6 ที่มีภาวะการกระกร่อนกระดูก การแสดงออกของ ibp ซึ่งเป็นภาระรหัสโปรตีน bone sialoprotein ที่มีผลในการยับยั้งการกระกร่อนกระดูก.

สารออกฤทธิ์ทางชีวภาพที่ได้จากพืช DHPH และกรดไซเปอเรโนอิก สารทั้งสองชนิดมีผลในการยับยั้งการเกิดและการทำงานของเซลล์สลายกระดูก ดังนั้นสารทั้งสองชนิดมีบทบาทสำคัญในการพัฒนาเป็นสารประกอบมุ่งหวังในการรักษาโรคกระดูกพรุน
Osteoporosis is one of the major health concerns for aging societies. The major cause of this condition is an imbalance in cellular function between bone forming cells, osteoblasts, and bone resorbing cells, osteoclasts. The progressive decrease in bone mass especially in aging individuals leads to increased susceptibility to fracture. This study aimed to screen and identify bioactive compounds from plants with activity against osteoclast differentiation and to elucidate its mode of action. Among these compounds, (3S)-1-(3,4-dihydroxyphenyl)-3-hydroxy-7-phenyl-(6E)-6-heptene (DHPH) and cyperenoic acid isolated from the rhizomes of Curcuma comosa Rox and the roots of Croton crassifolius Geiseler, respectively, showed strong an anti-osteoclastogenesis activity in receptor activator of nuclear factor-κB (RANK) ligand-induced bone marrow-derived osteoclast in vitro system. DHPH significantly inhibited RANKL-induced osteoclast differentiation by inhibiting the formation of tartrate resistance acid phosphatase (TRAP)-positive multinucleated cells (MNCs) with the half maximum inhibitory concentration (IC50) at 325±1.37 nM. The inhibitory effect of DPH while depends on impaired activation of multiple signaling pathways downstream of RANKL/RANK, mainly mitogen-activated protein kinases (MAPKs), including ERK (p44/42) and p38, but not NF-κB pathway. Treatment with DPH significantly suppressed two transcriptional factors, nuclear factor of activated T cells (NFATc1) and c-Fos, both of which are critical for osteoclast differentiation. DPH treatment also decreased bone resorption on bone slices. In addition, DPH clearly inhibited RANKL-induced osteoclast differentiation by inhibiting the formation of tartrate resistance acid phosphatase (TRAP)-positive multinucleated cells (MNCs) with the half maximum inhibitory concentration (IC50) at 325±1.37 nM. The inhibitory effect of DPH while depends on impaired activation of multiple signaling pathways downstream of RANKL/RANK, mainly mitogen-activated protein kinases (MAPKs), including ERK (p44/42) and p38,但 not NF-κB pathway. Treatment with DPH significantly suppressed two transcriptional factors, nuclear factor of activated T cells (NFATc1) and c-Fos, both of which are critical for osteoclast differentiation. DPH treatment also decreased bone resorption on bone slices. In addition, DPH clearly inhibited RANKL-induced osteoclast differentiation by inhibiting the formation of tartrate resistance acid phosphatase (TRAP)-positive multinucleated cells (MNCs) with the half maximum inhibitory concentration (IC50) at 325±1.37 nM. The inhibitory effect of DPH while depends on impaired activation of multiple signaling pathways downstream of RANKL/RANK, mainly mitogen-activated protein kinases (MAPKs), including ERK (p44/42) and p38, but not NF-κB pathway. Treatment with DPH significantly suppressed two transcriptional factors, nuclear factor of activated T cells (NFATc1) and c-Fos, both of which are critical for osteoclast differentiation. DPH treatment also decreased bone resorption on bone slices. In addition, DPH clearly enhanced alkaline phosphatase activity (ALP) in osteoblast precursor cell line MC3T3-E1. Cyperenoic acid dramatically suppressed TRAP+MNCs with an IC50 of 36.69±1.02 mM. Both MAPK and canonical NF-κB pathway, downstream of RANKL/RANK were not affected by cyperenoic acid treatment. Interestingly, non-canonical NF-κB pathway ((p100/p52) and TRAF3), was found to be affected by cyperenoic acid. Cyperenoic acid significantly reduced the expression of NFATc1 and c-Fos. Osteoclast-related genes i.e. nfatc1, ctsk and irf8, were all affected. The inhibitory effect of cyperenoic acid is associated with a diminution of bone resorption on the dentin slices. In vivo study using senescence-accelerated mouse prone 6 (SAMP6) mice strain revealed that cyperenoic acid significantly increased both bone area and the trabecular area in SAMP6 mice. Expression of ibsp, encoding bone sialoprotein, increased while the mRNA level of inflammatory-related genes was not affected. Taken together, plant-derived compounds, both DPH and cyperenoic acid, were effective in inhibiting osteoclast differentiation and function. Therefore, they have potential to be lead compounds for osteoporosis treatment.
ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor, Associate Professor Dr. Tanapat Palaga, Department of Microbiology, Chulalongkorn University, for his valuable suggestion and encouragement through the learning process of my Ph.D. study and related research. I would like to express my deeply grateful to my co-advisor Professor Dr. Apichart Suksamram, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Ramkhamhaeng University, for the kindness and supporting on my research, as well. Besides my advisor, I would like to thank the rest of my thesis committee: Assistant Professor Dr. Chulee Yompakdee, Associate Professor Dr. Chanpen Chanchao, Associate Professor Dr. Aphichart Karnchanat, and Professor Dr. Narattaphol Charoenphandhu

Furthermore, I would like to express my appreciation to Professor Dr. Soichiro Nakamura, Associate Professor Dr. Shigeru Katayama, and Assistant Professor Dr. Takakazu Mitani, Interdisciplinary Graduate School of Science and Technology, Shinshu University who gave me a golden opportunity to do this research in Japan.

A very special gratitude for the Science Achievement Scholarship of Thailand and Overseas Research Experience Scholarship for Graduated student from Graduate School and Faculty of Science, Chulalongkorn University for helping and providing the funding for this research.

Thankfulness would be given to all TP’s laboratory members especially, Dr. Wipawee Wongchana and Miss Preeyapan Sriploy, Graduate Program in Biotechnology and Microbiology, Chulalongkorn University, respectively for counseling and encouragement. Further, gratefulness would be given to Henry M. Corpuz, Ahmad Al Athamneh, Misa Arimura and other friends who have supported me along the way in Shinshu University, Japan.

Finally, I would like to thank my family for supporting me spiritually throughout working on this thesis and my life in general.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THAI ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ENGLISH ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Bone</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Cell involved in bone formation</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.1 Osteoblast</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.2 Osteoclast</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Bone remodeling process</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Regulation of bone remodeling</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1.1 Systemic regulators</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1.2 Local regulators</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Regulation of osteoclast differentiation and the associated signaling pathways</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 Cytokines involved in osteoclast differentiation</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 RANK/RANKL associated signaling pathways</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2.1 MAPKs pathway</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2.2 NF-κB pathways</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 Transcription factors regulating osteoclast differentiation</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Bone turnover marker (BTMs)</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1 Bone resorption markers</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2 Bone formation markers</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Senile osteoporosis mouse models</td>
<td>14</td>
</tr>
</tbody>
</table>
2.6 Effects of Thai medicinal plants and their bioactive compounds on osteoclast differentiation .. 15

2.7 Currently available agents to target bone loss and osteoporosis 19

CHAPTER III MATERIAL AND METHODS .. 21

3.1 Bioactive compounds .. 21

3.2 Cell cultures ... 25

3.2.1 RAW264.7 cell line ... 25

3.2.2 Bone marrow derived macrophage (BMMs) 25

3.2.3 Pre-osteoblast cell line (MC3T3-E1) 25

3.3 Cell viability assay ... 25

3.3.1 Thiazolyl blue tetrazolium bromide (MTT) assay 25

3.3.2 Methyl tetrazolium salt (MTS) assay 26

3.4 Anti-inflammatory activity assay ... 26

3.5 Anti-osteoclastogenesis activity screening assay 26

3.6 Qualitative reverse transcription polymerase chain reaction (RT-qPCR) 27

3.6.1 RNA extraction ... 27

3.6.2 Reverse transcription and quantitative polymerase chain reaction (qPCR) ... 27

3.7 Western blot .. 28

3.7.1 Cell lysate preparation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 28

3.8 Immunofluorescence staining ... 29

3.9 Bone resorption assay ... 31

3.10 Alkaline phosphatase activity assay (ALP) for osteoblast differentiation 31

3.11 In vivo study using Senescence Accelerated Mouse Prone 6 (SAMP6) mice .31

3.11.1 Standard diet food AIN-93M .. 31

3.11.2 Animal treatment .. 32

3.11.3 Bone histomorphometry ... 32

3.11.4 ELISA for serum bone sialoprotein 33
3.12 Statistical analyses ... 33

CHAPTER IV RESULTS... 34

4.1 Screening compounds from Thai medicinal plants with anti-
osteoclastogenic activity ... 34
 4.1.1 The effect of pure compounds from Thai medicinal plants on cell
viability in RAW264.7 cells ... 34
 4.1.2 Effect of pure compounds on nitric oxide production in LPS and IFN-
γ stimulated RAW264.7 cells .. 34
 4.1.3 Effect of pure compounds on RANKL-stimulated osteoclast
formation ... 39

4.2 The molecular mechanism of diarylheptanoid (DHPH, ASTP019) from C.
comosa Roxb. on RANKL-stimulated osteoclast differentiation 40
 4.2.1 Effect of DHPH on RANKL-stimulated osteoclast formation 40
 4.2.2 Effect of DHPH on the expression of osteoclast-related genes in
RANKL-stimulated BMMs ... 40
 4.2.3 Effect of DHPH on expression of NFATc1 and c-Fos in RANKL-
stimulated BMMs ... 43
 4.2.4 Effect of DHPH on NFATc1 nuclear translocation in RANKL-
stimulated BMMs ... 43
 4.2.5 Effect of DHPH on downstream signaling of the RANKL/RANK 46
 4.2.6 Effect of DHPH on bone resorption activity or osteoclast activation 48
 4.2.7 Effect of DHPH on osteoblast differentiation 49

4.3 The molecular mechanism of cyperenoic acid (ASTP053) from C.
crassifolius Geiseler on RANKL-stimulated osteoclast differentiation 51
 4.3.1 Effect of cyperenoic acid, cyperenol and CATC on RANKL-
stimulated osteoclast formation .. 51
 4.3.2 Effect of cyperenoic acid on expression of osteoclast related genes in
RANKL-stimulated BMMs ... 51
 4.3.3 Effect of cyperenoic acid on NFATc1 and c-Fos in RANKL-
stimulated BMMs ... 54
 4.3.4 Effect of cyperenoic acid on signaling downstream of
RANKL/RANK in RANKL-stimulated BMMs .. 55
4.3.5 Effect of cyperenoic acid on bone resorption activation in RANKL-stimulated osteoclasts ... 58

4.3.6 Effect of cyperenoic acid on ALP activity in osteoblasts 59

4.3.7 Effect of cyperenoic acid on SAMP6 mice as a senile osteoporosis model ... 60

CHAPTER V DISCUSSION .. 66

CHAPTER VI CONCLUSION ... 73

REFERENCES ... 74

APPENDIX .. 86

VITA .. 96
LIST OF FIGURES

Figure 1. Differentiation and function of osteoblasts and osteoclasts during bone formation..5

Figure 2. The bone remodeling process...9

Figure 3. Major signaling pathways governing osteoclast formation and activation. ...11

Figure 4. Anti-inflammation activity in stimulated RAW264.7 cells........................38

Figure 5. Effect of plant-derived pure compounds on RANKL-stimulated osteoclast formation..39

Figure 6. Effect of DHPH on RANKL-stimulated osteoclast formation..............41

Figure 7. Effect of DHPH on mRNA expression of osteoclast-related genes in RANKL-stimulated BMMs ..42

Figure 8. Effect of DHPH on NFATc1 and c-Fos in RANKL-stimulated BMMs.44

Figure 9. Effect of DHPH on nuclear translocation of NFATc1 in RANKL stimulated BMMs..45

Figure 10. Effect of DHPH on downstream signaling of the RANKL/RANK.47

Figure 11. Effect of DHPH on bone resorption in RANKL-stimulated osteoclasts....48

Figure 12. Effect of DHPH on cell viability and cell differentiation of pre-osteoblast MC3T3-E1 cells...50

Figure 13. Effect of cyperenoic acid and other compounds on RANKL-stimulated osteoclast formation..52

Figure 14. Effect of cyperenoic acid on expression of osteoclast-related genes in RANKL-stimulated BMMs. ..53

Figure 15. Effect cyperenoic acid on transcription factor in RANKL-stimulated BMMs. ..54

Figure 16. Effect of cyperenoic acid on MAPK and canonical NF-κB pathway in RANKL-stimulated BMMs. ..56
Figure 17. Effect of cyperenoic acid on non-canonical NF-κB pathway in RANKL-stimulated BMMs. ...57

Figure 18. Effect of cyperenoic acid on bone resorption in RANKL-stimulated osteoclasts. ..58

Figure 19. Effect of cyperenoic acid on cell viability and osteoblast differentiation in MC3T3-E1 cells..59

Figure 20. The body weight, diet consumption and pathology of liver and kidney in SAMP6 mice...62

Figure 21. Effect of cyperenoic acid on bone histomorphometry at distal femur.63

Figure 22. Effect of cyperenoic acid on expression of bone formation-related genes, bone resorption-related genes and pro-inflammatory cytokine genes in BMMs of SAMP6 mice. ...64

Figure 23. Effect of cyperenoic acid on bone resorption marker in SAMP6 mice serum..65

Figure 24. Proposed model of anti-osteoclastogenic activity of DHPH or cyperenoic acid ...72
LIST OF TABLES

Table 1. Anti-osteoclastogenic compounds isolated from medical plants 17
Table 2. Bioactive compounds used in this study .. 22
Table 3. List of primers used in this study ... 29
Table 4. List of primary antibodies used in this study ... 30
Table 5. IC\(_{50}\) and IC\(_{20}\) for cell viability in RAW264.7 cells 35
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>/</td>
<td>Per</td>
</tr>
<tr>
<td>:</td>
<td>Ratio</td>
</tr>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>avb3</td>
<td>Alpha-ν beta-3</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone mineral density</td>
</tr>
<tr>
<td>BMMs</td>
<td>Bone marrow derived macrophage precursors</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BSAP</td>
<td>Bone-specific alkaline phosphatase</td>
</tr>
<tr>
<td>BSP</td>
<td>Bone sialoprotein</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>cFMS</td>
<td>M-CSF receptor</td>
</tr>
<tr>
<td>cIAP</td>
<td>Cellular inhibitor of apoptosis</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td></td>
<td>Diarylheptanoid (3S)-1-(3,4-dihydroxyphenyl)-3-hydroxy-7-phenyl-(6E)-6-heptene</td>
</tr>
<tr>
<td>DHPH</td>
<td>7-phenyl-(6E)-6-heptene</td>
</tr>
<tr>
<td>DMAb</td>
<td>Denosumab</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>dATP, dCTP, dGTP and dTTP</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen receptor</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>g</td>
<td>Gravity (Centrifuge speed)</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>HSCs</td>
<td>Hematopoietic stem cells</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>IC<sub>20</sub></td>
<td>20 % of inhibitory concentration</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>50 % of inhibitory concentration</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gramma</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MMP9</td>
<td>Matrix metalloproteinase-9</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MSCs</td>
<td>Mesenchymal stromal cells</td>
</tr>
<tr>
<td>MTS</td>
<td>3-((4,5-dimethyl-2-yl)-5-((3-carboxymethoxyphenyl)-2-((4-sulfophenyl)-2H-tetrazolium, inner salt</td>
</tr>
<tr>
<td>MTT</td>
<td>3-((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium</td>
</tr>
<tr>
<td>N</td>
<td>Normality (Concentration)</td>
</tr>
<tr>
<td>NED</td>
<td>N-(1-naphthyl-ethylenediamine dihydrochloride)</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor – kappa B</td>
</tr>
<tr>
<td>NFATc1</td>
<td>Activate nuclear factor of activated T cells</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NIK</td>
<td>NF-κB-inducing kinase</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>OC</td>
<td>Osteocalcin</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
</tbody>
</table>
ODN Odanacatib
OPG Osteoprotegerin
PAGE Polyacrylamide gel electrophoresis
PBS Phosphate buffer saline
PBST Phosphate buffer saline - Tween 20
PCR Polymerase chain reaction
pNPP p-nitrophenyl phosphate
PTH Parathyroid hormone
PVDF Polyvinylidene fluoride
qPCR Quantitative polymerase chain reaction
RANKL Receptor activator of NF-κB ligand
RNA Ribonucleic acid
rpm Round per minute
RT Reverse transcription
RT-qPCR Qualitative Reverse transcription polymerase chain reaction
SAMP6 Senescence accelerated mouse prone
SDS Sodium dodecyl sulfate
sec Second
TNF Tumor necrosis factor
TRAF6 TNF receptor-associated factor 6
TRAP Tartrate-resistant acid phosphatase
TRAP+MNCs TRAP positive cells multinucleated giant cells
U Unit
v Volume
Vitamin D 1,25-Dihydroxyvitamin D
w Weight
CHAPTER I
INTRODUCTION

Osteoporosis is a major health concern for aging communities. The progressive decreasing in bone mass leads to an increased susceptibility to fracture. The major cause of this condition is an imbalance between bone forming cells, osteoblasts, and bone resorbing cells, osteoclasts. Osteoblasts derived from mesenchymal stem cell are responsible for bone formation. Osteoclasts develop from hematopoietic stem cells through the fusion of mononuclear myeloid precursors and mature to become multinucleated giant cells. Mature osteoclasts play a role in bone resorption. The functions of these two cell types are under tight regulation during bone remodeling by systemic or local regulators. Although currently there are therapeutic drugs to treat osteoporosis, the cost and the side effects of the drugs warrant the search for new therapeutic drugs. Therefore, new prevention and therapeutic measures to treat this condition is urgently needed.

During osteoclastogenesis, bone marrow derived macrophage precursors (BMMs) differentiate into tartrate-resistant acid phosphatase (TRAP)-positive cells, which fuse with each other to form mature osteoclasts. Mature osteoclasts have highly specialized functions. They have an ability to digest both the organic bone matrix and the inorganic minerals by secretion of acid and proteolytic enzymes such as TRAP, cathepsin K and matrix metalloproteinase 9 (MMP9). In particular, two cytokines macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κ ligand (RANKL) provide necessary signals for osteoclast differentiation. These two cytokines and signal through MAPKs (p38, SAPK/JNK and p44/42), canonical NF-κB (IKKs, IkBα and RelA/p50), non-canonical NF-κB (IKKα, NIK and RelB/p52) and costimulatory signal (PLCγ-Ca^{2+}) Pathway. These signals result in activation of key transcription factors in osteoclastogenesis including c-Fos, AP-1 and NFATc1.

Senescence Accelerated Mouse Prone 6 (SAMP6) is a senile osteoporosis model characterized by a low peak in bone mass after 16 weeks old. The decreasing in
bone formation and the increasing in bone resorption in SAMP6 mice owing to a deficiency of osteoblast progenitor cell and increasing maturation of osteoclast, respectively. The symptoms of mice are similar to aging human. Therefore, SAMP6 mice are useful model for study in term of senile osteoporosis.

Many natural products from medicinal plants have been invaluable sources in the discovery of new lead compounds for therapies, including therapeutic agents for bone loss.

In this study, osteoclasts derived from murine BMMs were induced by RANKL and M-CSF and used for screening of plant-derived compounds with an anti-osteoclastogenesis. The positive compounds were further investigated for the molecular mechanism. For an in vivo study, SAMP6 mice were used to examine for the effect of identified compound on bone loss.

Objective

1) To screen Thai medicinal plant-derived compounds or their derivatives for the anti-osteoclastogenesis activity
2) To investigate the molecular mechanism of action
CHAPTER II
LITERATURE REVIEW

2.1 Bone

Bone is a rigid dynamic organ with a porous mineralized structure. The main functions of bone consist of structural function, metabolic function, and hematopoietic function. There are two major types of bone, trabecular bone, and cortical bone. Further, the structural components of bone consist of an extracellular matrix, collagen, and cells (1).

2.1.1 Cell involved in bone formation

2.1.1.1 Osteoblast

Osteoblast is responsible for bone formation. Osteoblasts originated from mesenchymal stem cells like adipocytes, chondrocytes, myoblasts, and fibroblasts (2). They also produce extracellular protein, collagen type I, osteocalcin and alkaline phosphatase which are used as bone formation markers (3). Bone formation process consists of three steps:

a) Production of osteoid which is extracellular organic matrix, by osteoblast and deposition a collagen to bone matrix
b) Maturation of osteoid through increasing the mineralization rate in osteoid.
c) Matrix mineralization by fully mineralized osteoid (1, 4).

Furthermore, osteoblasts have the capacity to produce cytokines that are a critical for osteoclast differentiation such as macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). These cytokines enhance cell survival, cell proliferation and cell differentiation in osteoclasts while osteoprotegerin (OPG) inhibits osteoclastogenesis by competition with RANK receptor (5) (Fig. 1). In osteoblast deficient mice are also affected osteoclastogenesis (6). The activation of osteoblast is generated by bone remodeling regulators such as endocrines and growth factors (4).
2.1.1.2 Osteoclast

Osteoclasts are originated from hematopoietic stem cells, which develop through the fusion of mononuclear myeloid precursors and mature to become mature osteoclasts under the regulation of cytokines and growth factors similar to osteoblasts (4).

Precursor osteoclasts express M-CSF receptor (cFMS) and the RANK receptor on the cell surface. Binding between receptors and these ligands such as cFMS/M-CSF and RANK/RANKL leads to osteoclast maturation (7). During osteoclast differentiation, bone marrow-derived macrophage precursors (BMMs) differentiate into tartrate-resistant acid phosphatase (TRAP) positive cells, which fuse with each other to form multinucleated giant cells (TRAP+MNCs) (8) (Fig. 1).

Osteoclasts are responsible for bone resorption with highly specialized function. They have an ability to digest both the organic bone matrix and the inorganic minerals by secretion enzymes (9). Bone resorption process is initiated by the following step:

a) Attachment of osteoclasts on bone surface by alpha-v beta-3 (avb3) integrin binding molecule
b) Cytoskeleton reorganization, avb3 integrin binding on matrix surface leading to activate cytoskeleton processing within osteoclasts and movement of osteoclasts during bone resorption process
c) Releasing of acidified and proteolytic enzymes to bone matrix such as TRAP, cathepsin K and matrix metalloprotein-9 (MMP9) (10)

Therefore, osteoblast, a bone formation cell, and osteoclast, a bone resorption cell play an important role in bone turnover process.
Figure 1. Differentiation and function of osteoblasts and osteoclasts during bone formation.

Osteoblasts originated from mesenchymal stem cells become mature osteoblasts via precursor osteoblasts. Precursor osteoblasts produce necessary cytokines, RANKL, M-CSF, and OPG. They play a critical role in osteoclastogenesis. On the other hand, osteoclasts are originated from hematopoietic stem cells through precursor osteoclasts. Precursor osteoclasts express cFMS, a receptor for M-CSF. The binding of M-CSF to its receptor stimulates cell proliferation and cell survival further activates the expression of the RANK receptor on the cell surface of precursor osteoclast. Both M-CSF and RANKL induce maturation of osteoclasts resulting in cell-cell fusion of multinucleated giant cells. Mature osteoclasts produce enzymes such as TRAP, cathepsin K and MMP-9 for bone resorption process. OPG is a negative regulator for osteoclastogenesis by competition for RANK receptor (1, 4, 7) (Modified from Kini and Nandeesh (2001) (4) and Takayanagi (2007) (7)).
2.2 Bone remodeling process

The bone remodeling is a continuous process. This process involves the elimination of mineralized bone by mature osteoclasts and formation of bone matrix by osteoblasts. Bone remodeling could be divided into three stages (Fig. 2) (1, 11).

a) Resorption stage
The hematopoietic stem cells (HSCs) recruit to the bone where they differentiate to precursor osteoclasts and become mature osteoclasts. The mature osteoclasts generate the resorption lacunae or resorption pits on bone surface by secreting the acidified and proteolytic enzymes to the bone surface.

b) Reversal stage
The precursor osteoblasts move to bone surface. They prepare the appropriate bone surface for new osteoblasts then provide signals for osteoblast migration and differentiation.

c) Formation stage
The mature osteoblasts move to resorption lacunae and deposit the new bone into the cavity.

In normal bone turnover the processing of bone resorption and bone formation should be balanced. In the case of osteoporosis, the resorbed rate of osteoclasts is higher than the deposited rate of osteoblasts. The major cause of this condition is age-related condition leading to progressive decrease in bone mass and increase in bone fracture (11-13).

2.2.1 Regulation of bone remodeling

2.2.1.1 Systemic regulators

The systemic regulator is controlled by several types of hormones or vitamins with stimulatory and/or inhibitory activity in bone cells for example, parathyroid hormone, calcitriol, calcitonin, glucocorticoids, thyroid hormone, estrogen, androgen and vitamin D.
a) Parathyroid hormone (PTH)

PTH is secreted from parathyroid gland. PTH plays a role in calcium homeostasis and stimulates bone resorption for calcium releasing to blood circulation. The effect of PTH is mediated by PTH receptor on osteoblasts. The activated osteoblasts subsequently produce RANKL and M-CSF, lead to resorb on the bone surface (14).

b) 1,25-Dihydroxyvitamin D (Vitamin D)

Vitamin D is responsible for bone mineralization of osteoids. It promotes the activation of gene expression related to osteoblast differentiation and bone mineralization such as osteocalcin, collagen type I and alkaline phosphate. However, vitamin D also plays a role in bone metabolism via RANK/RANKL pathway by inducing the production of RANKL in osteoblast (15).

c) Androgen

Androgen, a steroid hormone, is one of sex hormones secreted from testes. This hormone is necessary for bone formation via androgen receptor in all of bone cell (16).

d) Estrogen

Estrogen is released by corpus luteum and ovary. Estrogen plays an important role in osteoclastogenesis regulator. It suppresses osteoclast activation by pass through estrogen receptor on osteoblast resulting in increasing of OPG and suppressing of RANKL and M-CSF. Moreover, estrogen also supports bone formation and osteoblast proliferation (17).

2.2.1.2 Local regulators

The local regulator is controlled by OPG/RANKL/RANK system (Fig. 1) and other cytokines (18). This system plays a critical role both for enhancement and for suppression of osteoclastogenesis (19). RANKL is expressed by precursor osteoblasts and stromal cells. In addition, RANK receptor expresses on precursor osteoclasts and mature osteoclasts. RANK and RANKL binding triggers the downstream signaling. M-CSF binding to cFMS
provides a signal which for cell proliferation and cell survivor in osteoclasts. Thus, both RANKL/M-CSF are essential factors for osteoclast development. On the other hand, OPG secreted by osteoblasts, acts as an inhibitor for osteoclastogenesis with competitive binding to RANK receptor (5, 20).

A number of cytokines are involved in bone metabolism with regulation of osteoclast differentiation. For example, interleukin (IL) 1 (21), IL-6 (22) and tumor-necrosis factor (TNF) (21) induce osteoclast differentiation and activation via inflammatory. Furthermore, IL-10 and interferon (IFN) γ inhibit RANKL signaling in osteoclast differentiation via cellular and humoral immunity, respectively (23).

2.3 Regulation of osteoclast differentiation and the associated signaling pathways

2.3.1 Cytokines involved in osteoclast differentiation

M-CSF and RANKL provide the necessary signals for osteoclast differentiation (24). Interaction between M-CSF and cFMS in osteoclast precursors promotes cell proliferation, survival and differentiation of early precursors osteoclast via the activation of kinases such as Src, PLC-γ, PI3-kinase, Akt and ERK (p44/p42) (25). In mice, point mutation in csf1 encoding M-CSF showed an osteopetrosis phenotype similar to osteopetrotic (op/op) mutant mice (26).

Binding of RANKL to RANK receptor on the cell surface of BMMs induces the recruitment of TNF receptor associated factor (TRAF) signal transduction molecules including in TRAF2, TRAF5 and TRAF6 to RANK. TRAF6 activates mitogen-activated protein kinases (MAPKs), including ERK, SAPK/JNK and p38 and canonical nuclear factor-κB (NF-κB) pathways, including IKK complex, RelA/p50 (p65/p50) and IκBα. In mice lacking TRAF6 exhibit severe osteopetrosis phenotype and osteoclast malformation (27). In addition, TRAF2 and TRAF3 also activate non-canonical NF-κB pathways which are IKKα, NF-κB-inducing kinase (NIK), RelB/p52. These kinases activate nuclear factor of activated T cells (NFATc1), a master transcription factor responsible for osteoclast differentiation and function (28) (Fig. 3).
Figure 2. The bone remodeling process.

The bone remodeling process consists of three stages i.e. resorption stage, hematopoietic stem cells move to the bone where they become precursor osteoclasts and mature osteoclasts, respectively. The mature osteoclasts generate resorption lacunae (pits) by releasing the proteolytic enzymes and acidified enzymes such as TRAP and cathepsin K to the bone matrix. Reversal stage, the precursor osteoblasts provide signals for osteoblast migration and differentiation. Formation stage, precursor osteoblasts differentiate to mature osteoblasts and deposit the new bone to the cavity belonged to bone formation process (Modified from Teitelbaum and Ross (2003) (11)).
2.3.2 RANK/RANKL associated signaling pathways

2.3.2.1 MAPKs pathway

MAPKs family consist of p38 (p38α, β, γ, and σ), c-Jun-N-terminal kinase (JNK1, 2 and 3) and extracellular signal-regulated kinase (ERK1 and ERK2) (29). MAPKs play a critical role in osteoclast differentiation. p38α-deficient monocytes failed to differentiation to osteoclasts (30). These MAPKs regulate activation of various transcription factors through either direct phosphorylation or indirect activation. Using, p38 inhibitor (SB203580), it was found to completely block the expression of c-Fos and NFATc1 in BMMs (31). Furthermore, active MAPKs (p38, ERK and JNK) could directly phosphorylate c-Fos and AP-1 and activate NFATc1 (Fig. 3) (32).

2.3.2.2 NF-κB pathways

NF-κB pathway is a family of transcription factor involved in various biological processes, including cell growth and survival, cell development, immune response and inflammation (33). In particular, NF-κB is divided into two major signaling transduction pathways, which are the classical pathway (canonical pathway), and the alternative pathway (non-canonical pathway) (34) (Fig. 3).

a) Canonical NF-κB pathway

Canonical NF-κB pathway is activated by numerous signals, including those mediated by innate and adaptive immune receptors (35). It plays critical role in osteoclastogenesis which proceeded by TRAF6 activation, a cytoplasmic domain. TRAF6 activates IκB kinase (IKK) complex which is an adaptor protein complex leading to phosphorylation and proteasome degradation of IκBα (19, 32). IκBα is inhibitory factor for RelA (p65)/p50 when NF-κB is activated, the proteasome degradation of IκB leads to conduct nuclear translocation of RelA/p50 (36).
Figure 3. Major signaling pathways governing osteoclast formation and activation.

Binding between M-CSF and cFMS enhances cell proliferation and cell survivor through ERK, Akt and mTOR pathways. TRAF6, a transduction molecule, activates MAPKs family including p38, SAPK/INK and ERK. These kinases activate c-Fos; and, activated c-Fos forms dimer with AP-1, and translocate to the nucleus. They bind to the nfactc1 promotor. Furthermore, TRAF6 stimulates canonical NF-κB (RelA/p50) via IKKs complex activation and IκBα degradation. On the other hand, TRAF2 and TRAF3 involve in non-canonical NF-κB pathways. TRAF2/TRAF3/cIAP complex regulate the activation of NIK. In the case of RANKL stimulation, this complex is ubiquitinated and degraded by cIAP leading to signaling cascade via NIK. I KKα triggers phosphorylation of p100 and processing into p52, a mature form of p100. Both RelA/p50 and RelB/p52 drive the activation of nfactc1 promotor. Taken together, c-Fos/AP-1 and NF-κB support the auto-amplification of NFATc1 leading to the expression of osteoclast-related genes; TRAP and cathepsin K. Interferon regulator factor-8 (IRF8) plays a key modulatory role in auto-amplification of NFATc1 by inhibiting the expression of NFATc1 (Modified from Takayanagi (2007) (7), Boyce et al. (2015) (37) and Aeschlimann and Evans (2004) (38).
b) Non-canonical NF-κB pathway

Non-canonical NF-κB is one of arms in NF-κB signaling which plays an important role in osteoclastogenesis as well (39). This process initiated by pass-through cytoplasmic domains; TRAF2 and TRAF3. TRAF3 is a major negative regulator that suppress the activation of NIK by ubiquitination and degradation (40). In TRAF3 knockout cells, NIK is accumulated leading to un-processed of p100 (41). Upon RANKL stimulation, TRAF3 is ubiquitinated and degraded by cellular inhibitor of apoptosis (cIAP) leading to accumulate of NIK and activate IKKα, respectively (39). Subsequently, IKKα triggers phosphorylation of p100 leading to process into the mature form of p100 (p52). Finally, p52 binds with RelB, translocate to nucleus and activates the gene transcription (42, 43).

2.3.3 Transcription factors regulating osteoclast differentiation

Association of TRAFs leads to activation of transcription factors, which induces expression of osteoclast relate genes (19, 32). RANK mutant (tnfrsf11a$^{-/-}$) exhibits completely lacking TRAF6 leading to abrogate osteoclastogenesis (44).

Activation of transcription factors including NF-κB, AP-1 and NFATc1, is necessary for osteoclast differentiation. NFATc1 plays an important role as a master transcription regulator of osteoclast differentiation (32). In nfatc1$^{-/-}$ embryonic stem cells could not differentiate into mature osteoclasts (45). NFATc1-deficient mice exhibited osteopetrosis phenotype owing to malformation in osteoclastogenesis process (46). Furthermore, mice lacking c-Fos developed osteopetrosis and problem with tooth eruption (47). AP-1 is transcription factor binds to c-Fos and forms dimeric complex. Consequently, the component of AP-1 and c-Fos is necessary for RANKL-mediated induction of NFATc1 (48).
2.4 Bone turnover marker (BTMs)

2.4.1 Bone resorption markers

a) TRAP

TRAP encoding by acp5, indicates critical condition for skeleton development. TRAP deficient mice (acp5−/−) exhibited the reducing of bone resorption activity leading to osteopetrosis phenotype. Therefore, TRAP is useful as biomarker for osteoclast function and level of bone resorption (49).

b) Cathepsin K

During bone resorption process, cathepsin K plays an important role in collagen and matrix protein degradation. Cathepsin K is secreted by mature osteoclast from ruffled border area into resorption lacunae. This enzyme encoded by ctsk. Cathepsin k (ctsk−/−) knockout mice contribute the osteopetrosis phenotype due to decreasing in bone resorption (50).

c) IRF8

IRF8 is a negative regulator, encoding by irf8. It is involved in osteoclast differentiation and function. irf8 is a key modulatory for osteoclast differentiation by suppressing the function and expression of NFATc1. Mice lacking IRF8 (irf8−/−) exhibited a severe osteoporosis due to osteoclast number increasing (51).

2.4.2 Bone formation markers

a) Bone sialoprotein (BSP)

BSP is encoded by ibsp and secreted by chondrocytes, a subset of osteoblasts, and osteoclasts. BSP deficient mice (ibsp−/−) diminished bone growth and mineralization leading to reduction in bone formation (52). Furthermore, BSP is an important for bone mineralization and bone formation. Therefore, BSP is useful diagnostic marker of bone resorption reflected osteoclast activity in human or animal serum (53).

b) Osteocalcin (OC)

OC is the most plentiful non-collagenous extracellular matrix protein in bone which produced by osteoblast. OC is encoded by bglap and can be used to evaluate bone formation rate. Furthermore, OC plays an important role in
differentiation of mesenchymal stromal cells (MSCs) leading to osteogenic process (54).

c) Bone-specific alkaline phosphatase (BSAP)

BSAP, non-collagen marker, is an isoenzyme of total alkaline phosphatase (ALP). BSAP is enrolled in osteoblast differentiation and specifically produced by osteoblasts while ALP expresses in liver and kidney as well (3). BSAP is encoded by pax5; and, in mice lacking in pax5 gene (pax5^{−/−}) resulting in osteopenia phenotype and increased osteoclast progenitors (55).

2.5 Senile osteoporosis mouse models

Senescence Accelerated Mouse Prone (SAMP) was developed by Takada <i>et al.</i> (1981) (56) from AKR/J strain. In 1968, after 24 inbreeding cycles between brothers and sisters of AKR/J strain mice, they observed some abnormality in AKR/J mice owing to some of the mice exhibiting severe degree of senescence such as hair loss and early death. In 1975, the severe senescence mice or others normal senescence mice were chosen as P and R series mouse strain, respectively. In 1999, they successfully developed new mouse strain which are senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR) (57).

SAMP6 is the one of SAMP mice exhibited senile osteoporosis and secondary amyloidosis. SAMP6 mice were developed after 110 generations of inbreeding cycles from AKR/J strains R-3. In SAMP6 mice, the peak of bone mass was clearly lower than other strains (58). They were characterized by a low peak in bone mass after 16-week-old (58, 59). Decreasing in bone formation and increasing in bone resorption in SAMP6 mice are caused by deficiency in osteoblast progenitor cell (57) and higher maturation of osteoclasts, respectively (60). In a study by Shimizu <i>et al.</i> (2001), they proved that an abnormality in SAMP6 mice were controlled by a group of genes which located at Pbd2 locus, on chromosome 13 by using cross-mating between SAMP2 and SAMP6 (61). Furthermore, Nakanishi <i>et al.</i> (2006), found that the expression of sfrp4 encoding secreted frizzled-related protein 4 (Sfrp4) increased in SAMP6 mice. Sfrp4 is a negative regulator in Wnt-β-catenin signaling which plays an important role in bone formation by competition with Wnt ligand (62). Thus, osteoporosis symptom of SAMP6 mice might be related to the increasing of sfrp4.
The appearance of symptom of SAMP6 mice is similar to senile human with type B fracture (57, 58). Therefore, SAMP6 mice are suitable as senile osteoporosis model.

2.6 Effects of Thai medicinal plants and their bioactive compounds on osteoclast differentiation

Natural products from medical plants are invaluable sources for discovery of new compounds for therapies, especially an anti-osteoclastogenesis for osteoporosis treatment. In Table 1, some bioactive compounds which have been used to study for anti-osteoporosis are summarized.

Curcuma comosa Roxb.

C. comosa (in Thai called Wan-chak-motluk) is one of members in Zingiberaceae. *C. comosa* is an indigenous medicinal plant in Thailand which has been used for postmenopausal state in women (63). The hexane extract from the rhizomes of *C. comosa* increases bone mass density in estrogen deficiency rat model (64). Diarylheptanoids are major compound isolated from a rhizomes of *C. comosa*. Diarylheptanoid not only enhances osteoblast-related genes in human osteoblast cells (65) but also increases bone volume and thickness in ovariectomized rat model with estrogen treatment (66). Furthermore, this compound inhibits nitric oxide production in RAW264.7 cell induced by LPS (67).

Tiliacora triandra (Colebr.) Diels

T. triandra (in Thai called Ya-nang) is familial with Menispermaceae. This plant is used widely as a traditional medicine in Southeast Asia for anti-inflammation and anti-cancer (68). The leaves extract of *T. triandra* inhibits oxidative stress, suppresses acetylcholinesterase (AChE) and also improves memory in acholic-induced rats (69). Tilliacorinine is belong to the major alkaloid isolated from a roots and stems of *T. triandra*. This compound inhibits human cholangiocarcinoma (CCA) via apoptosis through caspase activity with an increasing pro-apoptotic protein and decreasing anti-apoptosis proteins. In addition, tilliacorinine reduces the tumor growth in CCA xenografted mice (70).
Curcuma longa L.

C. longa (in Thai called Khamin-chan) belonged to Zingiberaceae has been used for anti-inflammatory, anti-fungal and abdominal pain in a traditional household treatment (71, 72). The roots extract from *C. longa* exhibits anti-fungal and anti-aflatoxigenic on *Aspergillus flavus*. The crude extract also reduces the contamination in maize seeds (73). Furthermore, the essential oil extracted from rhizomes *C. longa* exhibits anti-oxidant activity; and, it decreases in paw thickness in formalin-induced inflammatory mouse model. Therefore, the essential oil from *C. longa* has potential for anti-inflammation and anti-nociceptive activity (71).

Croton crassifolius Geiseler

C. crassifolius (Euphorbiaceae) is a medicinal plant distributed in Asia especially Thailand, Laos, Vietnam and China. The ethanol extract from *C. crassifolius* shows potential to be an anti-nociceptive and anti-inflammatory effects in animal model (74). The main phytochemical compound in *C. crassifolius* consists of diterpenoids (75) and sesquiterpenes. Cyperenoic acid is belong to a major sesquiterpene isolated from the roots of *C. crassifolius* which has been found by Boonyarathanakornkit et al (1987) (76). Cyperenoic acid shows anti-angiogenesis in the zebrafish embryo model by downregulating angiogenic genes (77). Furthermore, cyperenoic acid suppresses the releasing of vascular endothelial growth factor (VEGF) regulated angiogenesis in MCF-7 and HepG2 cancer cells line (78).
<table>
<thead>
<tr>
<th>Scientific name /compound group</th>
<th>Bioactive compound</th>
<th>Anti-osteoclastogenic activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curcuma comosa</td>
<td>Diarylheptanoid</td>
<td>enhances collα1, and bglap osteoblast-related gene in human osteoprogenitor cells further increases bone mineral density (BMD) and reduces bone turnover marker (osteocalcin and TRAP activity) in ovariectomized (OVX) rat.</td>
<td>(65, 66)</td>
</tr>
<tr>
<td>Rehmannia glutinosa</td>
<td>Aceoside</td>
<td>inhibits activation of MAPK and NF-κB by suppression p38 and p65 and also attenuates c-Fos and NFATc1 further reduces bone loss in OVX mice.</td>
<td>(79)</td>
</tr>
<tr>
<td>Xylocarpus moluccensis</td>
<td>7-oxo-deacetoxygedunin</td>
<td>suppresses osteoclast differentiation via MAPKs (p38 and ERK) and nuclear translocation of p65 in RAW264.7 cells.</td>
<td>(80)</td>
</tr>
<tr>
<td>Vigna angularis</td>
<td>Oleanolic acid acetate</td>
<td>impairs RANKL-stimulated BMMs by pass through PLCγ2-Ca^{2+} signaling and suppresses inflammation bone loss in LPS induced mice.</td>
<td>(81)</td>
</tr>
</tbody>
</table>
Sinomenium acutum

Sinomenine decreases the expression of AP-1 and NFATc1 via MAPKs (p38 and JNK) in BMMs further reduces TRACP5, RANKL and increase OPG in serum of Mt-induced bone loss rat.

Rhizoma Curcumae

Curcumol impairs on osteoclast formation both RAW264.7 cells and BMMs; and, also downregulate osteoclast-specific genes and activation of JNK/AP-1 signaling in RANKL-stimulated BMMs.

Hydratis canadensis

Berberine enhances osteoblast differentiation by increasing the expression of RUNX2 via MAPK (p38) and further increase BMD and decreases bone resorption marker in SAMP6 mice.

Gardenia jasminoides

Chlorogenic acid suppresses the MAPKs activation (p38 and ERK) and osteoclast-related genes, attenuates LPS-induced bone loss in mice.

Polyphenolic flavonoids

(1)-Catechin enhance cell proliferation and function in MC3T3-E1 pre-osteoblast cell by increasing ALP activity.
Humulus lupulus

Xanthohumol increases ALP activity and RUNX2 expression by activation of MAPKs signaling (p38 and ERK).

Platycodon grandiflorum

Saponins increases the expression of osteogenic marker genes, master transcription factor RUNX2 and also ALP activity in C2C12 cells.

Panax ginseng

Ginsenoside-Rb2 improves ALP activity and enhances osteoblast-related genes (*alp, collα1* and *bglap*) further increase BMP in OVX-mice.

2.7 Currently available agents to target bone loss and osteoporosis

Bisphosphonates

Bisphosphonates are anti-resorption drug with specific binding to bone matrix. The chemical structure is similar to pyrophosphate. Bisphosphonates generate adenosine triphosphate analog leading to apoptosis of osteoclasts (91). They effect to mature osteoclasts when they bind to the bone matrix for bone resorption process while osteoclast differentiation does not impact. However, there are side effects on gastrointestinal tract and kidney function (92). Furthermore, long-term of bisphosphonates treatment impairs bone turnover (93) because they might affect to either osteoblasts or osteocytes (94).

Denosumab (DMAb)

DMAb is a humanized monoclonal antibody against RANKL (95). It binds specifically to RANKL. The main mechanism of DMAb is to prevent the interaction between RANKL and RANK receptor similar to OPG which also inhibits binding between RANKL/RANK in natural environment. In addition, osteoclast differentiation and bone resorption are inhibited by denosumab (94, 96). However, DMAb has some side effects such as skin problem and bone, joint or muscle pain but not on kidney.
function. And the cost of DMAb is probably high because patients should take DMAb every 6 months (97).

Odanacatib (ODN)

ODN is a cathepsin K inhibitor and one of anti-resorption reagents. Cathepsin K is secreted by mature osteoclasts plays an important role in bone resorption by degradation of type I collagen. ODN binds to cathepsin K resulting in reduction of bone resorption (98). In cathepsin k deficiency mice (ctsk^{−/−}) exhibit an increasing in bone mass at trabecular thickness (99). ODN does not show side effect in phase I or II clinical trial but after 5 years treatment, the level of BSAP is slightly decreased in some patients (100).

Hormone therapy

Hormone therapy is a group of enhancement osteoblast function agent based on directly effect to osteoblasts via these receptors.

a) Teriparatide is a recombinant fragment of parathyroid hormone. It enhances osteoblast activity and bone formation (96).

b) Estrogen replacement activates osteoblast proliferation and increases apoptosis rate in osteoclast like estrogen hormone (96).
CHAPTER III
MATERIAL AND METHODS

3.1 Bioactive compounds

All compounds used in this study were summaries in Table 2. They were provided by Professor Apichart Suksamrarn, Ph.D., Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University. Diarylheptanoid \((3S)-1-(3,4\text{-dihydroxyphenyl})-3\text{-hydroxy-}7\text{-phenyl-}(6E)\text{-6-heptene (DHPH, code name ASTP019)}\) was isolated from the Rhizomes of *Curcuma comosa* which purchased from Kampaengsaen District, Nakorn Pathom Province, Thailand. The voucher herbarium specimen (SCMU no. 300) was deposited at the Department of Plant Science, Faculty of Science, Mahidol University (Thailand).

Tilliacorinine, tiliacorine and nortilliacorinine (code name ASTP040-042) were isolated from roots and stems of *Tiliacora triandra* which collected from Krasae Sin district, Songkhla province. A voucher specimen (Apichart Suksamrarn, No. 067) is deposited at the Faculty of Science, Ramkhamhaeng University.

The trienone analogs (code name ASTP045-049) were synthesized as analogs of curcuminooids, which were isolated the rhizome of *Curcuma longa*. The synthesis of the trienone analogs were described by Chuprajob *et al.* (2014) (101).

Cyperenoic acid (code name ASTP053) was isolated from roots of *Croton crassifolius*. The roots of *C. crassifolius* were collected from Nacharoen, Dech Udom district, Ubon Ratchathani province, Thailand, in December 2009. A voucher specimen (Apichart Suksamrarn, No. 062) was deposited at the Faculty of Science, Ramkhamhaeng University. Cyperenol (ASTP054) was modified from cyperenoic acid as a synthetic analog of cyperenoic acid. and other six ester analogs (code name ASTP055-060) were synthesized from cyperenol by esterification of cyperenol with appropriate carboxylic acids or acid chlorides.
<table>
<thead>
<tr>
<th>Sample name (code name)</th>
<th>Structure/Formula/ M.W.</th>
<th>Sources</th>
<th>Part used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarylheptanoid (35)-1-(3,4-dihydroxyphenyl)-3-hydroxy-7-phenyl-(6E)-6-heptene (DHPH) (ASTP019)</td>
<td>C_{19}H_{22}O_{3}, 298.38</td>
<td>C. comosa</td>
<td>Rhizome</td>
</tr>
<tr>
<td>Tilliacorinine (ASTP040)</td>
<td></td>
<td>T. triandra</td>
<td>Root/ stem</td>
</tr>
<tr>
<td>Tiliacorine (ASTP041)</td>
<td>C_{36}H_{36}N_{2}O_{5}, 576.26</td>
<td>T. triandra</td>
<td>Root/ stem</td>
</tr>
<tr>
<td>Nortiliacorinine (ASTP042)</td>
<td>C_{35}H_{34}N_{2}O_{5}, 562.65</td>
<td>T. triandra</td>
<td>Root/ stem</td>
</tr>
<tr>
<td>1-(2-hydroxyphenyl)-7-(3-hydroxyphenyl)-(1E,4E,6E)-1,4,6-heptatrien-3-one) or the trienone analog 045/ (ASTP045)</td>
<td>C_{19}H_{16}O_{3}, 292.33</td>
<td>Synthetic analog of curcuminoid</td>
<td></td>
</tr>
</tbody>
</table>
1,7-bis(4-hydroxyphenyl)

\((1E,4E,6E)-1,4,6\text{-heptatrien}-3\text{-one}\) or the trienone analog 046 (ASTP046)

\[
\text{C}_{19}\text{H}_{16}\text{O}_3, 292.33
\]

\[
\text{Synthetic analog of curcuminoid}
\]

1-(3-methoxy-4-hydroxyphenyl)-7-(3-hydroxyphenyl)- (1\(E\),4\(E\),6\(E\)-1,4,6-heptatrien-3-one)

or the trienone analog 047 (ASTP047)

\[
\text{C}_{20}\text{H}_{19}\text{O}_4, 322.12
\]

\[
\text{Synthetic analog of curcuminoid}
\]

1-(3-hydroxy-4-methoxyphenyl)-7-(3-hydroxyphenyl)- (1\(E\),4\(E\),6\(E\)-1,4,6-heptatrien-3-one)

or the trienone analog 048 (ASTP048)

\[
\text{C}_{19}\text{H}_{16}\text{O}_3, 292.33
\]

\[
\text{Synthetic analog of curcuminoid}
\]

1,7-bis(3-hydroxyphenyl)- (1\(E\),4\(E\),6\(E\)-1,4,6-heptatrien-3-one) or the trienone analog 049 (ASTP049)

\[
\text{C}_{15}\text{H}_{22}\text{O}_2, 234.33
\]

\[
\text{Cyperenoic acid of}\ C.\ crassifolius \text{ Root}
\]

Cyperenol (ASTP054)

\[
\text{C}_{15}\text{H}_{24}\text{O}_2, 220.35
\]

\[
\text{Synthetic analog of cyperenoic acid}
\]
Cyperenyl 10-O-(4-acetoxy-trans-cinnamate) or the ester analog 055 (CATC) (ASTP055)

Cyperenol 10-O-(2-acetoxy-trans-cinnamate) or the ester analog 056 (ASTP056)

Cyperenol 10-O-(3,4-dihydroxy-trans-cinnamate) or the ester analog 057 (ASTP057)

Cyperenol 10-O-(3-methoxy-4-acetoxy-trans-cinnamate) or the ester analog 058 (ASTP058)

Cyperenol 10-O-(3,4-dihydroxy-trans-cinnamate) or the ester analog 059 (ASTP059)

Cyperenol 10-O-(2-hydroxy-trans-cinnamate) or the ester analog 060 (ASTP060)
3.2 Cell cultures

3.2.1 RAW264.7 cell line

A macrophage like cell line, RAW264.7 (ATTC TIB-71) was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Thermo Fisher Scientific, UK) containing 10% fetal bovine serum (FBS) (GIBCO-Invitrogen, USA), 1% HEPES free acid, 1% sodium pyruvate and 1% penicillin-streptomycin (Thermo Fisher Scientific, UK) at 37°C with 5% CO₂ incubator (Thermo Electron Corporation, USA).

3.2.2 Bone marrow derived macrophage (BMMs)

Osteoclast differentiation, BMMs were isolated from humerus, femur and tibia of 6-8-week-old BALB/c female mice (National Laboratory Animal Center, Mahidol University). Cells were cultured with recombinant M-CSF (rM-CSF) (Immunotools, Germany) (25 ng/ml) for 48 hrs. BMMs were further cultured with rM-CSF (25 ng/ml) and recombinant RANKL (rRANK) (Biolegend, USA) (100 ng/ml) for another 5 days. Media were changed every 2 days during investigation. All procedures involving laboratory animals were approved by the Animal Care and Use Committee of Faculty of Science, Chulalongkorn University (Protocol review No.1423012 and 1623015).

3.2.3 Pre-osteoblast cell line (MC3T3-E1)

Pre-osteoblast cell line, MC3T3-E1 (RBRC-RCB1126), was purchased from RIKEN Bioresource Center (Ibaraki, Japan). Cells were maintained in α-Minimum Essential Media (MEM) (Gibco-Invitrogen, USA). For osteoblast differentiation assay, cells were seeded at 2.5x10⁴ cells/well in 12 well plates and induced by using ascorbic acid 200 mM (Sigma-Aldrich, USA) for 10 days. Media were changed every 3 days during investigation.

3.3 Cell viability assay

3.3.1 Thiazolyl blue tetrazolium bromide (MTT) assay

RAW264.7 or MC3T3-E1 cells line were seeded at 1x10⁴ cells/well in 96 well-plates for overnight and treated with bioactive compounds which were dissolved in DMSO at indicated concentrations (0.316, 1, 3.162, 10, 31.62 and 100 µM) for 24 hrs. MTT solution (Alfa Aesar, England) (5 mg/ml in PBS) was added to treated cells for 4 hrs. at 37°C. After incubation, DMSO was added to dissolve the insoluble formazan;
and, absorbance was measured at 540 nm by microplate reader (Biochom Anthos, UK). Cell viability was calculated by using the following formula.

\[
\% \text{ cell viability} = \frac{(\text{Absorbance of treated cells}) - (\text{Absorbance of blank})}{((\text{Absorbance of vehicle control treated cells}) - (\text{Absorbance of blank})) \times 100}
\]

The 50% and 20% inhibition concentration (IC\textsubscript{50}, IC\textsubscript{20}) were calculated using a GraphPad Prism 5.03.

3.3.2 Methyl tetrazolium salt (MTS) assay

RAW264.7 or MC3T3-E1 cells were seeded at 3×105 cells/well in 60 mm2 culture dish for 48 hrs. After, precursor osteoclasts were collected, seeded in 96 well-plate (2.5×105 cells/well) and treated with bioactive compounds at indicated concentrations for 24 hrs. Then, 10 µl/well of MTS solution (Promega, USA) was added to treated cells for 4 hrs. and incubated at 37°C. Absorbance was measured at 490 nm by microplate reader. Cell viability was calculated by using the similar formula as 3.3.1.

3.4 Anti-inflammatory activity assay

RAW264.7 cells were seeded at 2×105 cells/well in 96 well-plates overnight. Cells were pretreated with bioactive compounds at indicated concentrations for 1 hr. and stimulated with lipopolysaccharide (LPS) (Sigma Aldrich, USA) (100 ng/ml) and IFN-γ (BioLegend, USA) (10 ng/ml) for 24 hrs. Amount of nitric oxide production in culture supernatant of treated cell was measured by Griess reaction (102). Sulfanilamide (Sigma Aldrich, USA) and N-(1-naphthyl-ethylenediamine dihydrochloride (NED) (Sigma Aldrich, USA) were added to the culture supernatant (50 µl/well); and, the reaction was incubated for 10 min at room temperature in the dark. The absorbance was measured at 540 nm by microplate reader. Standard was generated by nitrite. The relative nitric oxide productivity (%) was calculated as a percentage relative to the untreated control.

3.5 Anti-osteoclastogenesis activity screening assay

The assay was performed as described by Bradley and Oursler, (2008) (103). Briefly, BMMs were seeded at 3×106 cells/well in 60 mm tissue culture dish for 48 hrs. The precursor osteoclasts were harvested and seeded at 2.5×105 cells/well in 96 well-plates. They were pre-treated with bioactive compounds at indicated concentrations for 30 min and stimulated with rM-CSF (25 ng/ml) and rRANKL (100 ng/ml) for 5 days.
Cells were washed with 1xPBS, fixed with 10% formaldehyde for 10 min, permeated with 95% ethanol for 2 min and washed with 1xPBS. Finally, cells were stained with a TRAP-staining solution (50 mM acetate buffer, 50 mM sodium tartrate, naphthol AS-MX phosphate (Sigma Aldrich, USA) (0.1 mg/ml) and Fast red violet LB salt (Sigma Aldrich, USA) (0.6 mg/ml). TRAP-positive multinucleated cells with three or more nuclei were counted as mature osteoclasts under light microscope (Olympus, Tokyo, Japan). TRAP enzyme activity was measured by using TRAP activity solution containing 50 mM citrate buffer with 10 mM p-nitrophenylphosphate (Sigma Aldrich, USA). The reaction was stopped by using 0.1 N NaOH (1:1 v/v). The absorbance was measured at 410 nm by microplate reader. The relative TRAP activity (%) was calculated as a percentage relative to the vehicle control.

3.6 Qualitative reverse transcription polymerase chain reaction (RT-qPCR)

BMMs were seeded at 7.6×10^5 cells/well in 24 well-plates and cultured with rM-CSF (25 ng/ml) for 48 hrs. After the incubation, BMMs were pre-treated with bioactive compounds at indicated concentrations for 30 min. This step was followed by the stimulation with rM-CSF (25 ng/ml) and in the present of rRANKL (100 ng/ml) and for 6, 12, 24, 48 and 72 hrs.

3.6.1 RNA extraction

Total RNA was isolated by using Trizol reagent (Thermo Fisher Scientific, UK) or RNAiso reagent (Takara-Bio, Japan) according to the manufacturer’s instruction RNA was measured using Quant iT assays (Thermo Fisher Scientific, UK).

3.6.2 Reverse transcription and quantitative polymerase chain reaction (qPCR)

Total RNA was mixed with random hexamer (Qiagen, Hilden, Germany) 0.01 ng/µl, and heated at 65°C for 5 min. The reverse transcription reagents contained 1x reverse transcriptase buffer, 1 mM dNTP mix, 20 U RNase inhibitor and 200 U Reverse transcription (Fermentas, Canada). The reaction was performed with the following condition in 25°C for 10 min, 42°C for 60 min and 70°C for 10 min. In other experiments the total RNA was converted by using ReverTra Ace® qPCR RT master mix with gDNA remover (TOYOBO, Japan).
A SYBR® Green (Bio-Rad Laboratories, USA) or Kapa SYBR (Kapa Biosystems, USA) was used for qPCR. Relative expression of osteoclast-related, osteoblast-related and pro-inflammatory genes (primer sequences and conditions for amplification of each gene are shown in Table 3) were determined and normalized, using the expression levels of β-actin. Relative fold experiment was calculate by $2^{\Delta\Delta CT}$ method as described by Livak and Schmittgen, (2001) (104).

3.7 Western blot

BMMs were seeded at 7.6×10⁵ cells/well in 24 well-plates and cultured with rM-CSF 25 ng/ml for 48 hrs. After that BMMs were pre-treated with bioactive compounds at indicated concentrations for 30 min. Cells were further stimulated with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) for 0, 5, 15, 30 and 60 min for MAPKs, canonical NF-κb or non-canonical NF-κB expression, or 0, 6, 12, 24, 48, 72 and 96 hrs for c-Fos or NFATc1 expression.

3.7.1 Cell lysate preparation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

Cell lysate were extracted by using RIPA buffer containing 1x protease inhibitor (Roche, Germany) and 1% (v/v) phosphatase inhibitor (Cell signaling technology, USA). The protein concentration was measured by using BCA assay (Thermo Fisher Scientific, UK). The cellular protein was resolved by 8-12% SDS-PAGE and transferred to PVDF membrane (GE Healthcare, USA) by using Trans-Blot® SD Semi-Dry Transfer Cell (Bio-rad, USA). The membranes were blocked twice with 3% skim milk in PBS-T for 5 min and probed with primary and secondary antibodies, respectively (Table 4). β-actin used as a protein loading control. Protein bands were visualized with high performance chemiluminescence X-ray film (Amersham Bioscience, UK) and density of the protein band was measured by using Image-J software.
Table 3. List of primers used in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence (from 5’ to 3’)</th>
<th>Annealing temp. (°C)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forward</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>irf8</td>
<td>GGAAAGCCTT</td>
<td>AAGGTCACC</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>ACCTGCTGAC</td>
<td>GTGGTCCCT</td>
<td></td>
</tr>
<tr>
<td>ctsk</td>
<td>GGCCAACCTC</td>
<td>GTACCCTCT</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>AAGAAGAAA</td>
<td>GCATTAGC</td>
<td></td>
</tr>
<tr>
<td>nfat1</td>
<td>GGTAACTCTGTCTTT</td>
<td>GTGATGACCCCAGCA</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>TCTAACCTTAAGCTC</td>
<td>TGCACCAGTCACAG</td>
<td></td>
</tr>
<tr>
<td>actb</td>
<td>ACCAACTGGGAC</td>
<td>GTGTTGGTGA</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>GACATGGAGAA</td>
<td>AGCTGTAGCC</td>
<td></td>
</tr>
<tr>
<td>il-6</td>
<td>AGTCCGGAGA</td>
<td>ATTTCACAGA</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>GGAGACTTCAC</td>
<td>TTTCCCAGAG</td>
<td></td>
</tr>
<tr>
<td>tnf-α</td>
<td>GGCAGGTCTACT</td>
<td>ACATTGCAGGCT</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TTGGAGTCATTGC</td>
<td>CAATGAAATTCCG</td>
<td></td>
</tr>
<tr>
<td>col1a1</td>
<td>CTTGGTGTTTTTT</td>
<td>GCCAAGGCA</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>GTATTCGATGAC</td>
<td>ACAGTCGCT</td>
<td></td>
</tr>
<tr>
<td>lbsp</td>
<td>GCACCTCAAC</td>
<td>TTTGGAGCC</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TGCCAAGA</td>
<td>CTGCTTTCG</td>
<td></td>
</tr>
<tr>
<td>bglap</td>
<td>CTGACAAGGCC</td>
<td>GCCGGCGAGT</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>TTCATGTCCAA</td>
<td>CTGTTCACTA</td>
<td></td>
</tr>
<tr>
<td>mmp9</td>
<td>GTCTTCCTGG</td>
<td>CTGGACAGAA</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>GCAAGCAGTA</td>
<td>ACCCCACTTC</td>
<td></td>
</tr>
<tr>
<td>acp5</td>
<td>CCAATGCCAA</td>
<td>TCTGTGCAGAG</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>AGAGATGCACC</td>
<td>ACCTTGCCAAG</td>
<td></td>
</tr>
<tr>
<td>actb</td>
<td>CACTATTGGCA</td>
<td>ACTTGCAGTG</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>ACGAGCGGTTC</td>
<td>CACGTGAGGAG</td>
<td></td>
</tr>
</tbody>
</table>

3.8 Immunofluorescence staining

BMMs (7.6×10⁵ cells/well, 8 well-plates) were cultured in the presence of rM-CSF (25 ng/ml) for 48 hrs to generate the osteoclast precursors. To examine mature osteoclasts, precursor osteoclast precursors were treated with rM-CSF (25 ng/ml) and rRANKL (100 ng/ml) for 24 and 48 hrs. They were washed with PBS, fixed with 4% paraformaldehyde for 10 min, permeated with 0.2 triton-X100 in PBS for 2 min and
washed four-times with PBS, respectively. Furthermore, Fc receptor on the cell surface was blocked by using 2.4G2 supernatant. Finally, they were stained with a rabbit anti-NFATc1 (1:100) for 1 hr, followed by anti-rabbit IgG conjugated with Alexa Fluor® 555 (1:1000) for 45 min and DAPI, respectively. The nuclear translocation of NFATc1 was visualized and counted (n = 100 cells/condition) under FV10i confocal laser scanning microscope (Olympus scientific solutions America corporation, US).

Table 4. List of primary antibodies used in this study

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Working Dilution</th>
<th>Exposure time for x-ray film (min)</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFATc1</td>
<td>1:1000</td>
<td>5</td>
<td>Cell Signaling Technology (CST), USA</td>
</tr>
<tr>
<td>c-Fos</td>
<td>1:1000</td>
<td>5</td>
<td>CST</td>
</tr>
<tr>
<td>Phospho-p38 (Pp-38)</td>
<td>1:2000</td>
<td>5</td>
<td>CST</td>
</tr>
<tr>
<td>total p38 (p38)</td>
<td>1:2000</td>
<td>2</td>
<td>CST</td>
</tr>
<tr>
<td>P-pSAPK/JNK</td>
<td>1:2000</td>
<td>5</td>
<td>CST</td>
</tr>
<tr>
<td>SAPK/JNK</td>
<td>1:2000</td>
<td>2</td>
<td>CST</td>
</tr>
<tr>
<td>P-p44/42</td>
<td>1:2000</td>
<td>5</td>
<td>CST</td>
</tr>
<tr>
<td>p44/42</td>
<td>1:2000</td>
<td>2</td>
<td>CST</td>
</tr>
<tr>
<td>P-p65</td>
<td>1:2000</td>
<td>5</td>
<td>CST</td>
</tr>
<tr>
<td>p65</td>
<td>1:2000</td>
<td>2</td>
<td>CST</td>
</tr>
<tr>
<td>P-p100</td>
<td>1:1000</td>
<td>30</td>
<td>CST</td>
</tr>
<tr>
<td>p100</td>
<td>1:1000</td>
<td>30</td>
<td>CST</td>
</tr>
<tr>
<td>TRAF3</td>
<td>1:2000</td>
<td>15</td>
<td>CST</td>
</tr>
<tr>
<td>Rel-B</td>
<td>1:2000</td>
<td>15</td>
<td>CST</td>
</tr>
<tr>
<td>β-actin</td>
<td>1:10000</td>
<td>1</td>
<td>Merck Millipore, Germany</td>
</tr>
<tr>
<td>mouse IgG</td>
<td>1:4000</td>
<td></td>
<td>CST</td>
</tr>
<tr>
<td>rabbit IgG</td>
<td>1:4000</td>
<td></td>
<td>CST</td>
</tr>
</tbody>
</table>
3.9 Bone resorption assay

The bone resorption assay was modified from Bradley and Oursler (2008) (103). To investigate the effect of bioactive compounds on osteoclast-mediated bone resorption, BMMs were seeded at 3×10^6 cells/well in 60 mm tissue culture dish for 48 hrs. Precursor osteoclasts were harvested and seeded at 7.6×10^5 cells/well in 96 well-plates containing bone slices (Immonodiagnostic systems, London) or dentin slices. Cells were pre-treated with bioactive compounds at indicated concentrations for 30 min and cultured in appropriate media containing rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) for 14 days at 37°C. Thereafter, cells were removed by sonication twice for 15 seconds in concentrated ammonium hydroxide. The bone slices or dentin slices were stained for 10 min by Toluidine Blue (1 mg/ml) (Sigma Aldrich, USA). The resorption pits were examined by a light microscope and photographed. Percentage of resorption area was determined by using area measurement function in Image-J software at 200-fold magnification. And calculation using the following formula Resorption area (%) = ((resorption area of treated cells) - (background of unstimulated control)) / ((resorption area of vehicle control treated cells) - (background of unstimulated control)) × 100.

3.10 Alkaline phosphatase activity assay (ALP) for osteoblast differentiation.

ALP activity assay was performed as described by Yazid et al., (2010) (105). Briefly, MC3T3-E1 cell line was washed and harvested with 1xPBS and 0.1% triton x-100 for 10 min, respectively. Amount of all protein lysate was measured by using the BCA assay and used to normalize the enzymatic activity. Cell lysate incubated with 0.1 M sodium bicarbonate-carbonate buffer (pH 10), containing 2 mM MgSO_4 and 6 mM p-nitrophenyl phosphate (pNPP) (Sigma Aldrich, USA) for 30 min at 37°C. The reaction was stopped by using 1.5 M NaOH (1:1), and the absorbance was measured at 405 nm by microplate reader.

3.11 In vivo study using Senescence Accelerated Mouse Prone 6 (SAMP6) mice

3.11.1 Standard diet food AIN-93M

The preparation of standard diet food AIN-93M was modified from Katayama et al., (2016) (106). Standard diet food AIN-93M obtained from Oriental Yeast (Tokyo, Japan) was crushed into ground pieces by using mixer. The crushed diet food AIN-93M (1 kg) was mixed with 0.01% bioactive compounds which dissolved in of absolute
ethanol 50 ml and DW water 500 ml was added. The mixed diet food AIN-93M was kneaded, molded and dried out by using incubator (50 °C) for two days. The diet was stored at 4 °C until use.

3.11.2 Animal treatment

SAMP6 mice were purchased from Japan SLC, Inc. (Shizuoka, Japan) and allowed to acclimatize for 1 week before the experiment. Mice were randomly assigned into 2 group based on body weight. Twelve SAMP6 mice were randomly assigned into control and cyperenoic acid treated group, respectively. The control group was fed with a standard diet food AIN-93M; and, cyperenoic acid treated group was fed with a standard diet mixed with 0.01 % cyperenoic acid powder. Mice were enable free access to the diet and tap water. Food intake and body weight were measured once a week. Mice were scarified after 19 weeks, long bones (humorous and tibia) were used for BMMs separation. Other bones were used for bone histomorphometry. In addition, serum was collected for ELISA. All experiments involved SAMP6 mice were conducted in accordance with the institutional guideline established by Shinshu University for laboratory animals (Shinshu Animal Protocol No. 280091).

3.11.3 Bone histomorphometry

The bone histomorphometry was modified from Orriss and Arnett (2012) (107) Briefly, mice femur bones were fixed with 4.5% formaldehyde (pH 7.2) for 2 days, decalcified with 14% EDTA (pH 7.2) for 14 days and dehydrated with 70%, 80%, 96% and 100% ethanol, respectively. The processed bones were transferred into a tissue embedding console and embedded in paraffin. The bone embedding was cut by using microtome (5 µm thickness). In addition, the bone tissue sections were stained with hematoxylin, fast green CFC and safranin O and examined by a light microscope. The percentages of bone area (BA) and trabecular area (TbA) were determined using Image-J software, at 200-fold magnification. The histomorphometric parameters both % BA and % TbA were calculated according to the formula described by Vidal et al, 2012 (108).

\[
% \text{BA} = \left(\frac{\text{total bone area}}{\text{total tissue area (TA)}} \right) \times 100
\]

\[
% \text{TbA} = \left(\frac{\text{trabecular area}}{\text{total bone area}} \right) \times 100
\]
3.11.4 ELISA for serum bone sialoprotein

Mouse Bone Sialoprotein (BSP) ELISA Kit (CUSABIO, USA) was used in this study. First, the standard solution and SAMP6 serum sample were added in BSP coated microwells (100 µl/well, 37 °C, 2 hrs); and, biotin-antibody was added into each well (100 µl/well, 37 °C, 1 hr). After remove sample, wells were washed by using wash buffer (200 µl/well, 2 times). HRP-avidin was added into each well (100 µl/well) and incubated 1 hr at 37 °C; and, all of wells were washed with wash buffer (200 µl/well, 5 times). Finally, TMB substrate (90 µl/well, 37 °C, 15-30 min) and stop solution (50 µl/well) were added to each well. Determine the optical density of each well within 5 min by using microplate reader at 450 nm.

3.12 Statistical analyses

All experiments were done in triplicate with at least two independent experiments. Results were expressed as the mean ± standard deviation (S.D.). The statistical significance of difference between an experimental group and the its corresponding control were evaluated by one-way ANOVA or Student’s T-test (GraphPad Prism 5.03). All comparisons were made as specified, and ***$p<0.001$, **$p<0.01$ and *$p<0.05$. were considered statistical significance.
CHAPTER IV
RESULTS

4.1 Screening compounds from Thai medicinal plants with anti-osteoclastogenic activity

4.1.1 The effect of pure compounds from Thai medicinal plants on cell viability in RAW264.7 cells

To determine the effect of toxicity pure compounds from three different plants and synthetic analog of curcuminoid on cell viability, RAW264.7 cells were treated with pure compound at indicated concentrations (0-100 μM) for 24 hrs. The cell viability (%) was using MTS or MTT assay. The half maximum inhibitory concentration (IC$_{50}$) or twenty inhibitory concentration (IC$_{20}$) for each compound was summarized in Table 5. Based on these preliminary results, the concentrations of these pure compounds at IC$_{20}$ or maximum concentration (100 μM) were chosen for further study.

4.1.2 Effect of pure compounds on nitric oxide production in LPS and IFN-γ stimulated RAW264.7 cells

Because osteoclast differentiation and inflammatory signaling share same common signaling pathways, pure compounds that have ability to suppress inflammation might interfere with osteoclast differentiation. To determine whether these compounds have anti-inflammatory activity, RAW264.7 cells were stimulated with or without LPS from E. coli (100 ng/ml) and IFN-γ (10 ng/ml) and treated with these pure compounds at indicated concentrations. The amount of nitric oxide in culture supernatant was measured by using Griess assay. The results indicated that ASTP019 and ASTP045 suppressed the nitric oxide production with an IC$_{50}$ of 1.012 ± 1.63 μM and 10.32 ± 1.46 μM, respectively (Fig. 4). Therefore, ASTP019 and ASTP045 might have impact on osteoclast differentiation.
<table>
<thead>
<tr>
<th>Source</th>
<th>Code name</th>
<th>compounds</th>
<th>IC<sub>50</sub> (µM)</th>
<th>IC<sub>20</sub> (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. comosa</td>
<td>ASTP019</td>
<td>Diarylheptanoid: (3S)-1-(3,4 dihydroxyphenyl) -3-hydroxy-7-phenyl-(6E)-6-heptene; (DHPH)</td>
<td>7.055±0.195</td>
<td>1.765±0.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. triandra</td>
<td>ASTP040</td>
<td>Tilliacorinine</td>
<td>4.96±0.62</td>
<td>1.06±0.50</td>
</tr>
<tr>
<td></td>
<td>ASTP041</td>
<td>Tiliacorine</td>
<td>1.11±0.55</td>
<td>0.28±0.14</td>
</tr>
<tr>
<td></td>
<td>ASTP042</td>
<td>Nortiliacorinine</td>
<td>2.37±1.03</td>
<td>0.59±0.25</td>
</tr>
<tr>
<td>Synthetic</td>
<td>ASTP045</td>
<td>1-(2-hydroxyphenyl)-7-(3-hydroxyphenyl)-(1E,4E,6E)-1,4,6-heptatrien-3-one or the trienone analog 045</td>
<td>18.48±1.8</td>
<td>4.87±2.31</td>
</tr>
<tr>
<td>analog of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>curcuminoid</td>
<td>ASTP046</td>
<td>1,7-bis(4-hydroxyphenyl)-(1E,4E,6E)-1,4,6-heptatrien-3-one or the trienone analog 046</td>
<td>10.14±2.13</td>
<td>2.53±0.53</td>
</tr>
<tr>
<td>SYNTHETIC</td>
<td>ASTP047</td>
<td>1-(3-methoxy-4-hydroxyphenyl)-7-(3-hydroxyphenyl)-(1E,4E,6E)-1,4,6-heptatrien-3-one or the trienone analog 047</td>
<td>9.17±1.66</td>
<td>2.29±0.41</td>
</tr>
<tr>
<td>Compound</td>
<td>Formula</td>
<td>Activity 1</td>
<td>Activity 2</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ASTP048</td>
<td>1-(3-hydroxy-4-methoxyphenyl)-7-(3-hydroxyphenyl)-(1E,4E,6E)-1,4,6-heptatrien-3-one</td>
<td>17.75±1.71</td>
<td>4.44±0.43</td>
<td></td>
</tr>
<tr>
<td>ASTP049</td>
<td>1,7-bis(3-hydroxyphenyl)-(1E,4E,6E)-1,4,6-heptatrien-3-one</td>
<td>3.26±0.5</td>
<td>0.86±0.42</td>
<td></td>
</tr>
<tr>
<td>C. crassifolius</td>
<td>ASTP053 Cyperenoic acid</td>
<td>≥ 100</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTP054 Cyperenol</td>
<td>≥ 100</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Synthetic analog of</td>
<td>Cyperenoic acid</td>
<td>≥ 100</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>cyperenoic acid</td>
<td>Synthetic ester analog of cyperenol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astp055</td>
<td>Cyperenyl 10-O-(4-acetoxy-trans-cinnamate) (CATC)</td>
<td>18.74±3.34</td>
<td>4.69±0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or the ester analog 055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astp056</td>
<td>Cyperenol 10-O-(2-acetoxy-trans-cinnamate)</td>
<td>82.40±0.77</td>
<td>14.44±6.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or the ester analog 056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astp057</td>
<td>Cyperenol 10-O-(3,4-dihydroxy-trans-cinnamate)</td>
<td>13±1.25</td>
<td>3.25±0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or the ester analog 057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Compound Description</td>
<td>Value 1</td>
<td>Value 2</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>ASTP058</td>
<td>Cyperenol 10-(O)-(3-methoxy-4-acetoxy-\textit{trans-}\cinnamate) or the ester analog 058</td>
<td>12.77±0.3</td>
<td>3.3±1.55</td>
<td></td>
</tr>
<tr>
<td>ASTP059</td>
<td>Cyperenol 10-(O)-(3,4-dihydroxy-\textit{trans-}\cinnamate) or the ester analog 059</td>
<td>3.84±1.39</td>
<td>0.96±0.35</td>
<td></td>
</tr>
<tr>
<td>ASTP060</td>
<td>Cyperenol 10-(O)-(2-hydroxy-\textit{trans-}\cinnamate) or the ester analog 060</td>
<td>19.63±0.04</td>
<td>4.89±2.31</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. Anti-inflammation activity in stimulated RAW264.7 cells.
RAW264.7 cells were stimulated with or without LPS (100 ng/ml) and IFN-γ (10 ng/ml) and treated with pure compounds at indicated concentrations (six different concentrations lower than or equal to IC₅₀ for cell viability). The amount of nitric oxide production was measured by using Griess assay. The data are representative of two independent experiments and presented as mean ± S.D.
4.1.3 Effect of pure compounds on RANKL-stimulated osteoclast formation

To investigate whether these pure compounds have activity against osteoclast differentiation, BMMs were stimulated with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) and treated with each compound at the IC$_{20}$ or maximum concentration (100 µM) for cell viability (Table 4). After 5 days, TRAP$^+$ MNCs were counted and percentage of osteoclast formation was calculated (Fig. 5). The results demonstrated that compounds from *C. comosa* (ASTP019), *T. triandra* (ASTP040, 41 and 42) and *C. crassifolius* (ASTP053, 54, 55 and 59) significantly inhibited osteoclast differentiation by suppressing the formation of TRAP$^+$ MNCs. Among these, the compounds (ASTP019, 53, 54 and 55) that effectively suppressed TRAP$^+$ MNCs to 25% or lower were chosen for further investigation of the effect on the signaling in RANKL/RANK pathway.

![Figure 5. Effect of plant-derived pure compounds on RANKL-stimulated osteoclast formation.](image)

BMMs were cultured with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) in the presence of each compound at the IC$_{20}$ or maximum concentration (100 µM) for cell viability for 5 days. TRAP$^+$MNCs were stained and counted. Data were expressed as mean ±S.D. from at least two independent experiments. *$p < 0.05$, **$p < 0.01$ and ***$p < 0.001$ indicated statistical significance.
4.2 The molecular mechanism of diarylheptanoid (DHPH, ASTP019) from C. comosa Roxb. on RANKL-stimulated osteoclast differentiation

4.2.1 Effect of DHPH on RANKL-stimulated osteoclast formation

To confirm the effect of DHPH on osteoclast differentiation and calculate the IC\textsubscript{50} for this activity, BMMs were stimulated with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) and treated with IC\textsubscript{20} DHPH (1.765 μM) (Fig. 6A, B) or indicated concentrations (0-3.53 μM) (Fig. 6C). TRAP+ MNCs were counted in each condition after 5 days of incubation. The representative pictures of TRAP staining were shown in Fig. 6D. The results indicated that DHPH with concentration of 1.765 μM or higher clearly inhibited RANKL-stimulated osteoclast formation. Both TRAP+ MNCs and TRAP enzyme activity were suppressed by DHPH treatment compared with vehicle control. The IC\textsubscript{50} of DHPH for osteoclast differentiation was 325 ± 1.37 nM. Therefore, DHPH at the IC\textsubscript{20} (1.765 μM) was used for further investigation in next series of experiments.

4.2.2 Effect of DHPH on the expression of osteoclast-related genes in RANKL-stimulated BMMs

To examine whether DHPH effect the expression of osteoclast-related genes, BMMs were pre-treated with DHPH (1.765 μM) or DMSO as the vehicle control for 30 min, and then stimulated with rM-CSF (25 ng/ml) and rRANKL (100 ng/ml) for 0, 6, 12, 24 and 48 hrs. Total RNA was subjected to RT-qPCR analysis for osteoclast-related genes (nfatc1, ctsk and irf8). The relative level of these genes was calculated as fold changes relative to that of the housekeeping gene β-actin. The results suggested that expression of nfatc1 was clearly suppressed by DHPH treatment after 24 hrs of rRANKL stimulation (Fig. 7A). Consistent with this result, the level of ctsk encoding cathepsin K which is one of the target genes of NFATc1 was reduced at 24 and 48 hrs (Fig. 7B). However, DHPH did not affect the level of irf8 (Fig. 7C) which encoded the negative regulator of osteoclast differentiation.

Therefore, DHPH impaired transcription of major osteoclast-related genes. The effect of DHPH at the signaling downstream of RANK/RANKL were investigated in the next experiment.
Figure 6. Effect of DPHH on RANKL-stimulated osteoclast formation.

BMMs were cultured with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) in the presence of (A, B) DPHH at 1.765 μM or (C) indicated concentrations for 5 days. (B) TRAP enzyme activity was determined as a relative enzyme activity. (D) TRAP\(^+\)MNCs were stained and counted as shown in A or C. Data were expressed as mean ± S.D. from at least two independent experiments. N.S., not significant. ***\(p < 0.001\) indicated statistical significance. Scale bar = 200 μm.
Figure 7. Effect of DHPH on mRNA expression of osteoclast-related genes in RANKL-stimulated BMMs.

BMMs were stimulated DMSO without RANKL (opened bar), DMSO as the vehicle control (closed bar) or pre-treated with DHPH (1.765 μM) (hatched bar) for 30 min, then stimulated with rRANKL (100 ng/ml) for indicated times. Total RNA was subjected to RT-qPCR. The expression of (A) nfatl, (B) ctsk, and (C) irf8 were calculated as a fold change relative to β-actin. The experiments were performed in triplicate with two independent experiments. Data were expressed as mean ± S.D., *p < 0.05, **p < 0.01 and ***p < 0.001 indicated statistical significance.
4.2.3 Effect of DPHH on expression of NFATc1 and c-Fos in RANKL-stimulated BMMs

To investigate the effect of DPHH on protein expression of two transcription factors, NFATc1 and c-Fos, of the RANKL/RANK, BMMs were pre-treated with DPHH (1.765 µM) or the vehicle control (DMSO) for 30 min, and then stimulated with rM-CSF (25 ng/ml) and RANKL (100 ng/ml) for 0, 6, 12, 24, 48, 72 and 96 hrs (Fig. 8A, B). Cell lysates were subjected to Western blot. The results indicated that NFATc1 was dramatically reduced in DPHH treated cells after 24 hrs of rRANKL stimulation, consistent with mRNA level. In addition, c-Fos was clearly suppressed by DPHH treatment after 6 and 24 hrs of rRANKL stimulation (Fig. 8A, B). Therefore, DPHH acts by inhibiting NFATc1 and c-Fos expression in RANKL-stimulated BMMs. Both transcription factors play a critical role in osteoclast differentiation.

4.2.4 Effect of DPHH on NFATc1 nuclear translocation in RANKL-stimulated BMMs

To determine whether DPHH interferes with NFATc1 nuclear translocation, BMMs were pretreated in the presence of DPHH (1.765 µM) for 30 min and then stimulated with rM-CSF (25 ng/ml) and RANKL (100 ng/ml) for 24 and 48 hrs. Cells with nuclear translocation of NFATc1 were shown in Fig. 9A and the cell numbers were counted and shown in Fig. 9B, DPHH treatment significantly reduced the percentage cells with nuclear NFATc1 in RANKL-stimulated BMMs.

Taken together, these results strongly suggested that DPHH interfered with RANKL/RANK signaling during osteoclast differentiation and suppressed activation of NFATc1 and c-Fos.
Figure 8. Effect of DPH on NFATc1 and c-Fos in RANKL-stimulated BMMs.
BMMs were pre-treated with DPH (1.765 μM) or vehicle control and stimulated with rRANKL (100 ng/ml) for indicated times. Cell lysates were analyzed for (A) NFATc1 and (B) c-Fos by Western blot. β-actin was used as a loading control. Data were representative of two independent experiments.
Figure 9. Effect of DHPH on nuclear translocation of NFATc1 in RANKL stimulated BMMs.

BMMs were pretreated with DHPH (1.765 μM) for 30 min and then stimulated with rM-CSF (25 ng/ml) and RANKL (100 ng/ml) for 48 hrs. Immunofluorescent staining for NFATc1 (red) and nuclei (blue) were shown in A. Cells with NFATc1 nuclear translocation were counted and calculated as % of cells with NFATc1 nuclear translocation in B. Data were expressed as two independent experiments. Scale bar = 30 μm, N.S. indicated statistical significance, ***p < 0.001 indicated statistical significance.
4.2.5 Effect of DHPH on downstream signaling of the RANKL/RANK

Because, DHPH interferes with both osteoclast-related genes and transcription with the expression of protein involving osteoclast differentiation, furthermore to examine whether DHPH inhibits activation of the MAPK (p38, ERK, and SAPK/JNK), BMMs were pre-treated with DHPH (1.765 μM) or DMSO as the vehicle control for 30 min, and then stimulated with rM-CSF (25 ng/ml) and RANKL (100 ng/ml) for 0, 5, 15, 30 and 60 min (Fig. 10). The results indicated that DHPH diminished the phosphorylation of p38 and ERK (p44/42) after 30 and 60 min after rRANKL stimulation while the phosphorylation of SAPK/ JNK remained unchanged in the DHPH treatment (Fig. 10A).

To investigate the effect of DHPH on canonical NF-κB pathway (p65 and IκBα), BMMs were stimulated with the two cytokines and treated with DHPH at the same condition as described above. The expression of canonical NF-κB were shown in Fig. 10B; and, the quantitative assay of band density was shown in Fig. 10C. The results indicated that DHPH did not reduce p65 phosphorylation or interfered with IκBα degradation after rRANKL stimulation.

Therefore, DHPH inhibited osteoclast differentiation by inhibiting phosphorylation of p38 and p44/42 in the MAPKs signaling pathway which play a critical role in osteoclastogenesis.
Figure 10. Effect of DPHH on downstream signaling of the RANKL/RANK. BMMs were pre-treated with of DPHH (1.765 μM) or vehicle control and stimulated with rRANKL (100 ng/ml) for the indicated times. Cell lysates were analyzed for (A) MAPKs or (B) canonical NF-κB by Western blot. (C) The quantitative band density of phosphorylation p65 normalized by p65 that were quantitated Pp65/p65 expression. β-actin was used as a loading control. The data represent the results obtained from at least two independent experiments.
4.2.6 Effect of DHPH on bone resorption activity or osteoclast activation

To investigate whether DHPH impairs osteoclast functions, bone slices were subjected to a bone absorption assay. Precursor osteoclasts from BMMs were cultured with rM-CSF (25 ng/ml) for 2 days then precursor osteoclasts were unstimulated, stimulated with rRANKL (100 ng/ml) as a vehicle control or treated with DHPH (1.765 μM) for 14 days. The bone resorption pits were observed and quantitated (Fig. 11A-D). DHPH treatment clearly decreased the area of osteoclast-mediated bone resorption. Therefore, these results were consistent with the effect of DHPH treatment on osteoclast differentiation.

Figure 11. Effect of DHPH on bone resorption in RANKL-stimulated osteoclasts. (A-C) Precursor osteoclasts were either left untreated (A) or cultured with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) in the presence of DHPH (1.765 μM) (B) or vehicle control (C) for 14 days. The resorption area on bone slices were stained with Toluidine Blue and observed by light microscope Scale bar = 200 μm. (D) The resorption areas were calculated as a percentage of total area resorbed using Image-J software at 100-fold magnification. ***p < 0.001 indicated statistical significance.
4.2.7 Effect of DHPH on osteoblast differentiation

Because the chemical structure of DHPH is similar to estrogen hormone which can induce osteoblast differentiation and bone formation, the effect of DHPH on cell viability and osteoblast differentiation using pre-osteoblast cell line (MC3T3-E1) was investigated. First, MC3T3-E1 cells were treated with DHPH at indicated concentrations (0-100 μM) for 24 hrs to evaluated toxicity. The effect of DHPH on cell viability of MC3T3-E1 cells was measured by using MTS assay (Fig. 12A). The results revealed that DHPH did not show any toxicity at tested concentrations. Interestingly, DHPH treatment increased cell numbers at high concentration (10-100 μM).

Next, to investigate the effect of DHPH on osteoblast differentiation, MC3T3-E1 cells were cultured with DHPH (1.765 μM) and stimulated with ascorbic acid (200 μM) for 10 days. The effect of DHPH on osteoblast differentiation was evaluated by measuring the ALP. ALP activity was normalized by 15 μg of protein content. As shown in Fig. 12B, DHPH treatment significantly enhanced ALP activity after ascorbic acid-induced osteoblast differentiation. Therefore, DHPH not only inhibits RANKL-stimulated osteoclast differentiation but also increases ascorbic-induced osteoblast differentiation.

Taken together, DHPH shows both anti-osteoclast differentiation and pro-osteoblast differentiation. Therefore, this compound has potential to become lead compound for osteoporosis treatment.
Figure 12. Effect of DHPH on cell viability and cell differentiation of pre-osteoblast MC3T3-E1 cells.

(A) MC3T3-E1 cells were treated with various concentration of DHPH for 24 hrs and measured by MTS assay (B) MC3T3-E1 cells were treated with DHPH (1.765 μM) or vehicle control and stimulated with ascorbic acid (200 μM) for 10 days. The alkaline phosphatase activity was measured and normalized by the same protein concentration. The data are representative of two independent experiments and presented as the mean ± S.D., **p < 0.01 and ***p < 0.001 indicated statistical significance.
4.3 The molecular mechanism of cyperenoic acid (ASTP053) from C. crassifolius Geiseler on RANKL-stimulated osteoclast differentiation

4.3.1 Effect of cyperenoic acid, cyperenol and CATC on RANKL-stimulated osteoclast formation.

To test whether cyperenoic acid, cyperenol or CATC suppress osteoclast differentiation by using the same concentrations as in Fig. 13, BMMs were stimulated with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) and treated with cyperenoic acid (100 µM), or cyperenol (100 µM) or CATC (4.69 µM) for 5 days. TRAP⁺ MNCs were counted and shown in Fig. 13A, B. The representative pictures of TRAP staining were shown in Fig. 13 C. The results indicated that three bioactive compounds isolated from C. crassifolius significantly inhibited osteoclast differentiation to the same level (Fig. 13A). Therefore, cyperenoic acid, major compound from C. crassifolius, was chosen for detailed study in the next experiment at a concentration of 100 µM.

Next, BMMs were stimulated with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) and treated with cyperenoic acid at several concentrations (0-100 µM) for 5 days. TRAP⁺ MNCs were counted and valued for IC₅₀. The results suggested that cyperenoic acid clearly inhibited RANKL-stimulated osteoclast formation with the IC₅₀ of 36.69 ± 1.02 µM (TRAP⁺ MNCs IC₅₀). Therefore, cyperenoic acid at 100 µM was used for investigation in the next experiments.

4.3.2 Effect of cyperenoic acid on expression of osteoclast related genes in RANKL-stimulated BMMs

To examine whether cyperenoic acid affects expression of osteoclast related genes, BMMs were pre-treated with cyperenoic acid (100 µM) or DMSO as the vehicle control for 30 min, and then stimulated with rM-CSF (25 ng/ml) and rRANKL (100 ng/ml) for 0, 6, 12, 24 and 48 hrs. Total RNA was subjected to RT-qPCR analysis for osteoclast-related genes (nfatc1, ctsk and irf8). The expression of these genes was indicated as a fold change normalized by the level of β-actin. The results indicated that mRNA of both nfatc1 and ctsk, which encoded positive regulator of osteoclastogenesis, were suppressed by cyperenoic acid after 48 hrs rRANKL stimulation (Fig. 14A, B). Moreover, this compound obviously delayed the reduction of irf8, which encoded
negative regulator of osteoclastogenesis (Fig. 14C). Therefore, cyperenoic acid affect the transcriptional level of both positive and negative regulators in osteoclast differentiation.

Figure 13. Effect of cyperenoic acid and other compounds on RANKL-stimulated osteoclast formation.

BMMs were cultured with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) in the presence of (A) cyperenoic acid (100 µM), cyperenol (100 µM) and CATC (4.69 µM) or (B) cyperenoic acid at various concentration (0-100 µM) for 5 days. (C) TRAP⁺ MNCs were stained for TRAP activity. The data are representative of two independent experiments and presented as mean ± S.D., ***p <0.001, **p<0.01 and *p< 0.05 indicated statistical significance.
Figure 14. Effect of cyperenoic acid on expression of osteoclast-related genes in RANKL-stimulated BMMs.

BMMs were stimulated DMSO without RANKL (opened bars), DMSO as the vehicle control (closed bars) or pre-treated with cyperenoic acid (100 μM) (hatched bars) for 30 min, then stimulated with rRANKL (100 ng/ml) for indicated times. Total RNA was subjected to RT-qPCR. The expression of (A) nfactc1, (B) ctsk, and (C) irf8 were shown as a fold change relative to β-actin. The experiments were performed in triplicate and two the results were representative of two independent experiments. Data were expressed as mean ± S.D., ***p <0.001 and *p < 0.05 indicated statistical significance.
4.3.3 Effect of cyperenoic acid on NFATc1 and c-Fos in RANKL-stimulated BMMs.

To investigate whether cyperenoic acid attenuates the expression of NFATc1 and c-Fos, BMMs were pre-treated with cyperenoic acid (100 µM) or the vehicle control (DMSO) for 30 min, then stimulated with rM-CSF (25 ng/ml) and RANKL (100 ng/ml) for 0, 6, 12, 24, 48, 72 and 96 hrs. Cell lysates were subjected to Western blot analysis for NFATc1 or c-Fos. The results indicated that cyperenoic acid delayed the pattern of NFATc1 expression after 72 hrs of RANKL stimulated and also clearly suppressed NFATc1 expression at 96 hrs (Fig. 15A). Furthermore, the level of c-Fos expression was significantly impaired by cyperenoic acid at 48 hrs (Fig. 15B).

![Figure 15. Effect cyperenoic acid on transcription factor in RANKL-stimulated BMMs.](image)

BMMs were pre-treated with cyperenoic acid (100 µM) or DMSO as a vehicle control and stimulated with rRANKL (100 ng/ml) for indicated times. Cell lysates were analyzed for expression of NFATc1 (A) and c-Fos (B) by Western blot. β-actin was used as a loading control. Data were representative of two independent experiments.
4.3.4 Effect of cyperenoic acid on signaling downstream of RANKL/RANK in RANKL-stimulated BMMs

Because cyperenoic acid impairs both osteoclast-related genes expression and transcription factors activation, to determine whether cyperenoic acid effects on the activation of MAPKs (p38, ERK, and SAPK/JNK) or canonical NF-κB (p65 and IκBα), BMMs were pre-treated with cyperenoic acid (100 μM) or DMSO as the vehicle control for 30 min, and then stimulated with rM-CSF (25 ng/ml) and RANKL (100 ng/ml) for 0, 5, 15, 30 and 60 min. All phosphorylation of MAPKs and canonical NF-κB signaling were not differed after cyperenoic acid treatment. The results indicated that cyperenoic acid (100 μM) did not have any effect neither on MAPKs (Fig. 16A) nor on canonical NF-κB (Fig. 16B). There are reports suggesting that RANK/RANKL activates non-canonical NF-κB pathways (39). Thus, the effect of cyperenoic acid on non-canonical NF-κB pathways was examine in the next experiment.

To examine the effect of cyperenoic acid on non-canonical NF-κB pathway (RelB/p52 and TRAF3), BMMs were pre-treated with cyperenoic acid (100 μM) or DMSO and stimulated with RANKL and rM-CSF at the same condition as described above. As shown in Figure 17, cyperenoic acid clearly attenuated the phosphorylation of p100 and also impaired the activation of p52, a processed from of p100, at 60 min after cyperenoic acid treatment. The level of TRAF3 was also reduced after 15 min of cyperenoic acid treatment. However, this compound did not have any effect on RelB level.

Therefore, cyperenoic acid impaired on osteoclast differentiation at least at the p100/52 activation step in non-canonical NF-κB signaling.
Figure 16. Effect of cyperenoic acid on MAPK and canonical NF-κB pathway in RANKL-stimulated BMMs.

BMMs were pre-treated with of cyperenoic acid (100 μM) or vehicle control for the indicated times in the present of rRANKL (100 ng/ml). Cell lysates were analyzed for (A) MAPKs and (B) canonical NF-κB by using Western blot. β-actin was used as a loading control. Data were representative of two independent experiments.
Figure 17. Effect of cyperenoic acid on non-canonical NF-κB pathway in RANKL-stimulated BMMs.

BMMs were pre-treated with cyperenoic acid (100 μM) or vehicle control for the indicated times in the presence of rRANKL (100 ng/ml). Cell lysates were analyzed for non-canonical NF-κB expression by using Western blot. β-actin was used as a loading control. Data were representative of two independent experiments.
4.3.5 Effect of cyperenoic acid on bone resorption activation in RANKL-stimulated osteoclasts

To investigate whether cyperenoic acid disrupt osteoclast function, dentin slices were subjected to a bone absorption assay. To generate precursor osteoclast, BMMs were cultured with rM-CSF (25 ng/ml) for 2 days; and, precursor osteoclasts were unstimulated, stimulated with rRANKL (100 ng/ml) as a vehicle control or threatened with cyperenoic acid (100 µM) for 14 days. The bone resorption pits were observed (Fig. 18A-C) and the area of resorption was calculated and shown in Fig. 18D. The results indicated that cyperenoic acid treatment significantly, but partially, reduced the size of the area of osteoclast-mediated bone resorption, consistent with the effect of cyperenoic acid treatment on osteoclast differentiation.

Figure 18. Effect of cyperenoic acid on bone resorption in RANKL-stimulated osteoclasts.

(A-C) Precursor osteoclasts were either left untreated (A) or cultured with rRANKL (100 ng/ml) and rM-CSF (25 ng/ml) in the presence of cyperenoic acid (100 µM) (B) or vehicle control (C) for 14 days. The resorption area on dentin slices were stained with Toluidine Blue and observed by light microscope Scale bar = 200 µm. (D) The resorption areas were calculated as a percentage of total area resorbed using Image-J software at 100-fold magnification. ***p <0.001 indicated statistical significance.
4.3.6 Effect of cyperenoic acid on ALP activity in osteoblasts

As DHPH is effective on both osteoclast and osteoblast differentiation, it is an interest to know whether cyperenoic acid has an effect on osteoblast differentiation. MC3T3-E1 cells were treated with cyperenoic acid at various concentrations (0-100 \(\mu \text{M} \)) for 24 hrs. The effect on cell viability in MC3T3-E1 was measured by MTT assay (Fig. 19A). The results indicated that this compound did not show any toxicity at tested concentrations and the IC\(_{50}\) is more than 100 \(\mu \text{M} \).

To investigate the effect of cyperenoic acid on osteoblast differentiation based on ALP, MC3T3-E1 cells were cultured in the presence of cyperenoic acid (100 \(\mu \text{M} \)), the same concentration which inhibited osteoclast differentiation, and stimulated with ascorbic acid (200 \(\mu \text{M} \)) for 10 days. The effect of cyperenoic acid on osteoblast differentiation was evaluated by ALP activity assay as shown in Fig. 19B. Cyperenoic acid did not have any affect to ALP activity in ascorbic acid-induced osteoblast differentiation, as well. Therefore, cyperenoic acid from did not have any effect on osteoblast differentiation in pre-osteoblast cell.

Figure 19. Effect of cyperenoic acid on cell viability and osteoblast differentiation in MC3T3-E1 cells.
MC3T3-E1 cells were treated with cyperenoic acid at various concentrations (0-100 \(\mu \text{M} \)) for 24 hrs and measured cell viability by MTT assay. (B) MC3T3-E1 cells were treated with cyperenoic acid (100 \(\mu \text{M} \)) or DMSO as a vehicle control and stimulated with ascorbic acid (200 \(\mu \text{M} \)) for 10 days. The ALP activity was measured and normalized by the protein concentration. The data are representative of two independent
experiments and presented as the mean ± S.D.. **p <0.001 indicated statistical significance.

4.3.7 Effect of cyperenoic acid on SAMP6 mice as a senile osteoporosis model

As shown above, cyperenoic acid is a strong potentiality of osteoclast differentiation owing to it effect on the activation of both transcriptional and translational level of RANKL-stimulated BMMs. Next, the effect of cyperenoic acid on senile osteoporosis model (SAMP6) were investigated.

To examine whether cyperenoic acid influence bone loss in senile osteoporosis model, SAMP6 mice were randomly assigned into two groups; control and cyperenoic acid treated group by using body weight (Appendix Table 1). Mice were fed with standard diet mixed with 0.01% cyperenoic acid for 19 weeks. The body weight and diet consumption were measured once a week (Fig. 20A-B). The results indicated that there was no difference between body weight and diet consumption between the two groups.

Next, the organ toxicity was examined in liver and kidney sections stained with hematoxylin and eosin (H&E) (Fig. 20C-F). There were no obvious pathological signs in both organs in cyperenoic acid fed mice. The results indicated that cyperenoic acid did not have systemic toxicity even in long-term consumption.

To determine the effect of cyperenoic acid on bone microstructure, femur bones were separated and processed for bone histomorphometry. Bone histomorphometric parameters which are bone area and trabecular area, were used to determine the bone condition. Bone microstructure of control and cyperenoic acid fed group were shown in Fig. 21A, B. The results indicated that cyperenoic acid treatment significantly increased both bone area and the trabecular area in SAMP6 mice as shown in Fig. 21C, D, compared to the control group.

Furthermore, to detect the effect of cyperenoic acid on expression of genes involved in bone formation (coll1α1, bglab and ibsp) or bone resorption (acp5 and mmp9) or pro-inflammatory cytokines (tnf-α and il-6), BMMs were flushed out of tibia and humerus and total RNA was subjected to RT-qPCR analysis for genes expression. The resulted demonstrated that cyperenoic acid enhanced the expression of ibsp
encoding bone sialoprotein (BSP) compared with the control group (Fig. 22C). BSP is an osteoblast-related protein played an important role in bone formation and bone mineralization. On the other hand, this compound did not have any effect on other genes tested (Fig. 22D-G).

To confirm whether cyperenoic acid influences the serum bone resorption marker, serum was collected from SAMP6 mice after 19 weeks of cyperenoic acid treatment. Amount of BSP in serum was detected by sandwich ELISA. The results indicated that the level of BSP in serum was slightly decreased when compared with control group but did not reach statistical significance (Fig. 23). Therefore, cyperenoic acid treatment by supplement in the normal diet enhanced the expression of ibsp and also increased bone microstructure, bone area and trabecular area, in SAMP6 mice.

Taken together, these results strongly suggested that cyperenoic acid from C. crassifolius impairs RANKL/RANK signaling via non-canonical NF-κB pathway and might be an effective compound for osteoporosis.
Figure 20. The body weight, diet consumption and pathology of liver and kidney in SAMP6 mice.

SAMP6 mice were fed with the standard diet food AIN-93M or mixed with 0.01 % cyperenoic acid for 19 weeks. (A-B) The body weight and diet consumption were measured once a week. Representative liver (C, D) and kidney (E, F) sections with H&E staining from each group. The experiments were performed with six mice per group. Scale bar = 200 μm.
Figure 21. Effect of cyperenoic acid on bone histomorphometry at distal femur.

Femur bones of mice were separated and processed for bone histomorphometry. And bone area and trabecular area were used to distinguish the bone condition. (A-B) Representative microscopic image of femoral bone at distal end stained with safranin O (red), fast green (green) and hematoxylin (blue). Bone histomorphometric parameters, the bone area and trabecular area were calculated and shown in C or D. The experiments were performed with six mice per group. Trabecular bone (TB).
Cortical bone (CB), Scale bar = 200 µm. **p < 0.01 and *p < 0.05 indicated statistical significance.

Figure 22. Effect of cyperenoic acid on expression of bone formation-related genes, bone resorption-related genes and pro-inflammatory cytokine genes in BMMs of SAMP6 mice.

Total RNA from bone marrow cells was subjected to RT-qPCR analysis for genes expression. The expression of the bone formation-related genes ((A) col1α1, (B) bglab and (C) ibsp), the bone resorption-related genes ((D) acp5 and (E) mmp9) and pro-inflammatory cytokines ((F) tnf-α and (G) il-6) were indicated as a fold change relative to β-actin. Each dot represented each mouse. Data were expressed as mean ± S.D., **p < 0.01 and *p < 0.05 indicated statistical significance.
Figure 23. Effect of cyperenoic acid on bone resorption marker in SAMP6 mice serum.

Serum was collected from SAMP6 mice in each group. The level of BSP in blood circulation was detected by sandwich ELISA and compared between the two groups. Data were expressed as mean ± S.D., *p < 0.05 indicated statistical significance.
CHAPTER V
DISCUSSION

This study reported the novel biological activity of natural compounds isolated from medicinal plants on osteoclast differentiation. There are four medicinal plants that were used to investigate in this study. First, *C. comosa* (in Thai called Wan-chak-motluk) has been traditionally used for postmenopausal symptoms in women (63). Recently, the hexane extract from the rhizome of *C. comosa* was reported to increase bone mass density in estrogen deficiency mouse model (64) but its effect on osteoclast was not reported. DHPH is a major phytoestrogen from a rhizomes of *C. comosa*. Therefore, it is hypothesized that DHPH may act as phytoestrogen and improve post-menopause conditions. Second, *T. triandra* (in Thai called Ya-nang) is used widely as a traditional medicine in Southeast Asia for anti-inflammation and anti-malarial treatment (68). The leaves extract of *T. triandra* improves memory via decreasing oxidative stress in alcoholic rats (69). Tilliacorinine belongs to the major alkaloid isolated from roots and stems of *T. triandra*. This compound induced cell death in human cholangiocarcinoma cell via apoptosis through activation of caspase (70). Third, *C. longa* (in Thai called Khamin-chan) has been used for anti-inflammatory, anti-fungal and abdominal pain in a traditional household treatment (71, 72). The root extract from *C. longa* shows activity against *Aspergillus flavus* (73). The essential oil extracted from rhizomes of *C. longa* exhibits anti-inflammation and antinociceptive activity in inflammatory mouse model (71). Fourth, *C. crassifolius* (in Thai called Phang-khi) has been used for anti-cancer in alternative medicine (76). Cyperenoic acid belongs to the major sesquiterpenoids which was isolated from the roots of *C. Crassifolius* (109). Cyperenoic acid was reported to have an anti-angiogenesis in MCF-7 and HepG2 cancer cells line (78).

Osteoclastogenesis and inflammatory signaling share same common pathways. During osteoclastogenesis, pro-inflammatory cytokines such as IL-1, IL-6 and TNF enhance osteoclast activity while osteoblast activity inhibit (58). TNF-α also activates c-Fos and NFATc1 via NF-κB and JNK pathways (110). In the case of chronic inflammation such as in rheumatoid arthritis, synovial tissues produce pro-
inflammatory cytokines that can stimulate osteoclastogenesis (111). Therefore, if compounds have anti-inflammatory activity, they might be effective against osteoclast differentiation. DHPH and ASTP045 isolated from C. comosa and curcuminoids of C. longa, respectively, clearly suppressed nitric oxide production in macrophages which is an indicator of inflammation while cyperenoic acid and other tested pure compounds did not have any effect on nitric oxide production. Similarly, Sornkaew et al. (2015), reported that diarylheptanoids from C. comosa inhibited nitric oxide production in RAW264.7 cell induced by LPS (67); and, in a study by Liju et al. (2011), the essential oil from C. longa reduced acute inflammation in inflammatory mouse model (71). The ethanol extract from C. crassifolius showed anti-inflammatory effect in mice (74).

There were some pure compounds that also affect osteoclastogenesis such as tilliacorinine, tiliacorine and nortiliacorinine from T. triandra; and, the cyperenol and CATC from C. crassifolius. However, they were not study in detail because of the cellular toxicity and the limitation in quantity of the compounds.

TRAP is an enzyme critical for skeleton development (49). Mice with TRAP deficiency (acp5−/−) exhibited reduction in bone resorption leading to osteopetrosis phenotype (49). Therefore, TRAP activity is useful as an indicator for osteoclast differentiation. In this study, the biological activity of DHPH and cyperenoic acid in osteoclast differentiation model was examined by TRAP enzyme activity. DHPH is a strong inhibitor of osteoclastogenesis with an IC50 of 325 ± 1.37 nM whereas cyperenoic acid has an IC50 of 36.69 ± 1.02 µM with no cellular toxicity. The results indicated that DHPH has stronger anti-osteoclastogenic activity than cyperenoic acid. However, DHPH showed cellular toxicity at higher concentrations.

DHPH and cyperenoic acid dramatically decreased the expression of c-Fos at earlier timepoint and decreased NFATc1 expression at late timepoint of RANKL-stimulated osteoclast differentiation. Both compounds reduced both mRNA and protein of NFATc1. The sizes of NFATc1 on Western blot may reflect the post-translational modification by histone acetyltransferase (HATs) in acetylation process (112). DHPH and cyperenoic acid also affect NFATc1 molecular weight pattern. Furthermore, the nuclear translocation of NFATc1 is controlled by dephosphorylation of NFATc1 by activated calcineurin (113) and modification of NFATc1 by poly (ADP-ribose) polymerase 1 (PARP-1) in poly(ADP-ribosylation) (114).
NFATc1 is a master regulator of osteoclast differentiation and functions to transcriptional osteoclast-specific gene such as TRAP via c-Fos (45, 115). NFATc1-deficient mice exhibited osteopetrosis phenotype owing to malformation in osteoclastogenesis process. Matsuo et al. (2004) (115); and, Takayanagi et al. (2002), found that the expression of nfatc1 was abrogated by fos deletion in osteoclast precursors and c-Fos deficient mice showed failure in osteoclast differentiation. Furthermore, c-Fos also bound to nfatc1 and acp5 promotor. Thus, the critical role of nfatc1 auto-amplification might be impacted by cooperation between NFATc1 and c-Fos (45, 46). It was reported that at an early stage of osteoclast differentiation, c-Fos is a necessary factor involved in early activation of NFATc1 in osteoclastogenesis (48). Lee et al. (2013) reported that acteoside isolated from Rehmannia glutinosa, reduced both c-Fos and NFATc1 expression and might be an effective compound for anti-osteoclast differentiation (79).

Treatment with DHPH or cyperenoic acid reduced the TRAP and transcription factors which play a critical step in osteoclastogenesis and because they are major ingredient from medicinal plants, they were chosen for detailed in vitro and in vivo.

The osteoclast-specific genes encoding both positive regulators (nfatc1 and ctsk) and negative regulator (irf8) were affected by either DHPH or cyperenoic acid. DHPH inhibited the expression of nfatc1 and ctsk but not ifr8. On the other hand, cyperenoic acid impacted not only positive regulator genes but also negative regulator gene which involved in osteoclast differentiation and function. These results suggested that these two compounds act differently on RANKL signaling pathway. irf8 encodes a key modulatory protein for osteoclast differentiation. IRF8 suppresses the expression of NFATc1. Mice lacking irf8 exhibited severe osteoporosis phenotype because of increasing osteoclast numbers (51).

The molecular mechanism underlying the anti-osteoclastogenic activity of DHPH is proposed in Fig. 24 The phosphorylation of p38 and p44/42 were reduced by DHPH treatment. MAPKs pathway is involved in an early step in osteoclast differentiation. p38α-deficient monocytes cells exhibited decreasing osteoclast differentiation capacity (30). Furthermore, in a study by Huang et al. (2006), the expression of c-Fos and NFATc1 in BMMs were completely blocked by p38 inhibitor (SB203580). Therefore, during osteoclast differentiation, p38 plays a critical role in
regulating both c-Fos and NFATc1 expression (31). There are anti-osteoclastogenic compounds such as the acteoside (79) and a 7-oxo-deacetoxygedunin (80), that suppress both phosphorylation of p38 and phosphorylation of p65 in canonical NF-κB signaling during osteoclast differentiation.

An important finding of this study was that cyperenoic acid was effective in inhibiting RANKL-mediated osteoclast differentiation in BMMs via a non-canonical NF-κB signaling pathway. Cyperenoic acid suppressed both phosphorylation of p100 and p52 processing. The processing of p100 is critical for development of lymphoid organs and bone metabolism (39). NIK is responsible for p100 processing by inducing the Skp1-Cullin-1/Cdc53-F box protein ubiquitin ligase (SCFβTrCP). Then, SCFβTrCP binds to β-transducin repeat-containing protein (β-TrCP), a substrate-binding site on NIK-responsive domain (NRD) of p100, resulting in p100 processing (34). NIK induced p100 ubiquitination and processing is blocked by β-TrCP knockdown (116). Furthermore, Iotsova et al. (1997) found that p50, p52 double knockout mice (p50^{−/−} p52^{−/−}) exhibited an osteopetrosis phenotype while single knockout of p50^{−/−} or p52^{−/−} mice, did not show bone malformation. In p50^{−/−}p52^{+/−} mice, they harbor osteoclast progenitors and precursor osteoclasts but these progenitors could not develop to mature osteoclasts (117). Therefore, both canonical and non-canonical NF-κB are important for bone development. Cyperenoic acid dramatically inhibited osteoclastogenesis based on c-Fos and NFATc1 expression at least through non-canonical NF-κB signaling. Thus, the summarized mechanisms of action cyperenoic acid was proposed in Fig. 24.

On the other hand, cyperenoic acid might affect other signaling pathways downstream of RANK/RANKL signaling. In the studies by Huang et al. (2015) (77); and, Chen et al. (2017) (78), cyperenoic acid from C. crassifolius shows anti-angiogenesis activity. RANKL also induces angiogenesis via ERK1/2 (p44/42) and Src-PLC-Ca²⁺ which are also critical downstream molecular in osteoclastogenesis (118). In this study, the effect of cyperenoic acid on ERK was not detected. Therefore, cyperenoic acid might be inhibits osteoclastogenesis via Src-PLC-Ca²⁺. However, the effect of cyperenoic acid on Src-PLC-Ca²⁺ pathway in osteoclastogenesis needs further investigation.
DHPH not only enhanced the ALP activity during osteoblast differentiation but also increased cell proliferation in the murine pre-osteoblast cell (MC3T3-E1). Similar to diarylheptanoid 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene, this compound also enhances cell differentiation and bone marker-related genes in MC3T3-E1 (119). In a study by Tantikanlayaporn et al. (2013), the diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol from C. comosa enhanced expression of osteoblast-related genes in human osteoblasts (65). In addition, diarylheptanoid has a bone-sparing effect by increasing bone volume and thickness in ovariectomized rat model compared with estrogen treatment (66). In contrast to DHPH, cyperenoic acid has no impact on ALP activity and osteoblast proliferation.

The effect of diarylheptanoid on bone formation might be due to the structure of this compound is similar to estrogen. Estrogen is a stimulator for bone growth and maintain the bone structural (120). DHPH is one of the diarylheptanoids associated with phytoestrogen. In a study by Thongon et al. (2017), a major hydroxyl diarylheptanoid, 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-phenyl(1E)-1-heptene was isolated from C. comosa. This compound performs as selective estrogen receptor modulators (SERMs) (119). Accordingly, DHPH may bind to estrogen receptor (ER) and perform as SERMs. Nevertheless, the association between cyperenoic acid and its receptor in osteoclasts need further investigation such as structure modeling (121).

Senescence Accelerated Mouse Prone 6 (SAMP6) mice are used as senile osteoporosis model because of the deficiency in osteoblast progenitor cell (57) and increased osteoclast maturation (60) due to the defect in the group of genes located at Pbd2 locus on chromosome 13 (61). The appearance of symptom is similar to aging human (58). In a study by Li et al. (2003), SAMP6 mice were used to determine the effect of berberine, an isoquinoline alkaloid, on dexypyridinoline (Dpd), a bone resorption marker, and procollagen type I carboxyterminal extension peptide (PICP), a bone resorption marker from either urine or serum, respectively (85). Furthermore, Gou et al. (2010) also used SAMP6 mice for investigation the bone loss condition in substituted benzothiophene or benzofuran derivatives. Thus, SAMP6 is useful as senile osteoporosis model (122, 123).

In an in vivo study of SAMP6 mice, compelling evidence was obtained that cyperenoic acid is effective in preventing osteoporosis in SAMP6 mice. In particular,
Cyperenoic acid enhanced the bone sialoprotein (BSP) encoded by the *ibsp* gene. BSP deficiency in mice (*ibsp*−/−) resulting in diminishing bone growth and mineralization and reduction of bone formation (52); therefore, BSP is important for bone mineralization and bone formation. Furthermore, BSP is a useful diagnostic marker of bone resorption, reflecting the osteoclast activity in human or animal serum (53). In this study, cyperenoic acid slightly decreased BSP level in SAMP6 mice serum but did not significantly.

Interestingly, cyperenoic acid did not have any effect on *il-6* and *tnf-α* mRNA level which are related to inflammation and bone loss condition (124). A systemic organ toxicity in SAMP6 mice was determined by using histological analysis of H&E staining. After 19 weeks of treatment, there was no evidence for side effect either in the control or cyperenoic acid fed group at least in liver and kidney. Furthermore, histomorphometric parameters are used to distinguish the bone condition. Typically, osteoporosis shows a high level of bone turnover and low level of bone volume (108). Cyperenoic acid clearly increased in bone area and trabecular area.

SAMP6 mice are characterized by both low bone mass and low bone mass density (BMD) after 16 weeks of age (59). In this study, mice were fed with cyperenoic acid (0.01%) supplemented with animal chow before they start showing any sign of osteoporosis symptoms. The treatment period considered a long-term treatment. On the other hand, ovariectomized (OVX) mouse model exhibits bone loss condition within shorter periods (5 weeks) (125). However, it is noted that OVX impacts both hormone and immune systems in mice (126).

Taken together, DPHP and cyperenoic acid appear to be a promising candidate for osteoporosis therapeutic based on anti-osteoclastogenic and enrich bone formation in SAMP6 without toxicity.
Figure 24. Proposed model of anti-osteoclastogenic activity of DHPH or cyperenoic acid

The black and red arrows indicate the activation or inhibition of RANK/RANKL signaling (Modified from Takayanagi (2007) (7), Boyce et al. (2015) (37) and, Aeschlimann and Evans, (2004) (38).
CHAPTER VI
CONCLUSION

6.1 Screening compounds from Thai medicinal plants with anti-osteoclastogenic activity

6.1.1 Diarylheptanoid (3S)-1-(3,4-dihydroxyphenyl)-3-hydroxy- 7-phenyl-(6E)-6-heptene (DHPH) and 1-(2-hydroxyphenyl)-7-(3-hydroxyphenyl-(1E,4E,6E)-1,4,6-heptatrien-3-one) suppressed nitric oxide production with an IC₅₀ of 1.012 ± 1.63 µM and 10.32 ± 1.46 µM, respectively.

6.1.2 DHPH from C. comosa and cyperenoic acid, cyperenol, cyperenyl 10-O-(4-acetoxy-trans-cinnamate) and cyperenol 10-O-(3,4-dihydroxy-trans-cinnamate) from C. crassifolius significantly inhibit osteoclast differentiation by suppressing the formation of TRAP⁺ MNCs.

6.2 DHPH inhibited TRAP⁺ MNCs at the IC₅₀ of 325 ± 1.37 nM. DHPH significantly decreased the expression of nfatc1 and ctsk possibly by ERK inhibiting (p44/42) and p38 activation. Bone resorption by osteoclast was also abrogated by DHPH. In addition, DHPH increased both cell proliferation and cell differentiation in pre-osteoblast cell (MC3T3-E1).

6.3 Cyperenoic acid suppressed TRAP⁺ MNCs at the IC₅₀ of 36.69 ± 1.02 µM. Cyperenoic acid decreased the expression of nfatc1 and ctsk and delayed the expression of irf8. Cyperenoic acid inhibited non-canonical NF-κB pathway at p100/52 activation. Cyperenoic acid partially reduced bone resorption. In addition, cyperenoic acid increased both bone area and trabecular area in SAMP6 mice with no systematic organ toxicity.
REFERENCES

List of preparing reagents

1) **DMEM complete media** (total 100 ml)

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM</td>
<td>87</td>
<td>ml</td>
</tr>
<tr>
<td>FBS</td>
<td>10</td>
<td>ml</td>
</tr>
<tr>
<td>1M HEPES free acid</td>
<td>1</td>
<td>ml</td>
</tr>
<tr>
<td>100 Mm Sodium pyruvate</td>
<td>1</td>
<td>ml</td>
</tr>
<tr>
<td>100x Penicillin-streptomycin</td>
<td>1</td>
<td>ml</td>
</tr>
</tbody>
</table>

2) **MEM complete media** (total 100 ml)

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM without ascorbic acid</td>
<td>87</td>
<td>ml</td>
</tr>
<tr>
<td>FBS</td>
<td>10</td>
<td>ml</td>
</tr>
<tr>
<td>1M HEPES free acid</td>
<td>1</td>
<td>ml</td>
</tr>
<tr>
<td>100 Mm Sodium pyruvate</td>
<td>1</td>
<td>ml</td>
</tr>
<tr>
<td>100x Penicillin-streptomycin</td>
<td>1</td>
<td>ml</td>
</tr>
</tbody>
</table>

3) **Freezing media** (total 1000 μl)

3.1) **BMMs cell**

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS</td>
<td>900</td>
<td>μl</td>
</tr>
<tr>
<td>DMSO</td>
<td>100</td>
<td>μl</td>
</tr>
</tbody>
</table>

3.2) **RAW264.7 cell**

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM complete media</td>
<td>900</td>
<td>μl</td>
</tr>
<tr>
<td>DMSO</td>
<td>100</td>
<td>μl</td>
</tr>
</tbody>
</table>

3.3) **MC3T3-E1 cell**

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM complete media</td>
<td>900</td>
<td>μl</td>
</tr>
<tr>
<td>DMSO</td>
<td>100</td>
<td>μl</td>
</tr>
</tbody>
</table>
4) **PBS** (total 1000 ml)

- NaCl: 8 g
- KCl: 0.2 g
- Na$_2$HPO$_4$: 3.63 g
- KH$_2$PO$_4$: 0.24 g
- DDW: 1 L

Adjusted pH to 7.4 and autoclaved at 121 °C

5) **MTT solution (5 mg/ml)** (total 40 ml)

- MTT: 200 mg
- Sterile 1x PBS: 40 ml

6) **Sulfanilamide solution** (1% w/v in 5% phosphoric acid)

- Sulfanilamide: 1 g
- 85% Phosphoric acid: 5.88 ml
- DDW: 94.12 ml

7) **N-(1-napthyl)-Ethylenediamine Dihydrochloride (NED) solution (0.1% w/v)**

- NED: 0.1 g
- DDW: 100 ml

8) **TRAP solution for TRAP staining assay** (total 1000 ml)

- 50 mM sodium acetate with 50 mM sodium tartrate

 - Glacial acetic acid: 11.025 µl
 - Sodium acetate trihydrate: 6.8 g
 - Sodium tartrate dihydrate: 11.5 g
 - DDW: 1000 ml

Adjusted pH to 5.0 and autoclaved at 121 °C

9) **TRAP solution for TRAP activity assay** (total 1000 ml)

- 50 mM citrate buffer with 10 mM solution

 - Citric acid: 10.51 g
 - Sodium citrate dihydrate: 14.71 g
Sodium tartrate dihydrate 2.3 g
DDW 1000 ml

Adjusted pH to 4.6 and autoclaved at 121 ºC

10) TRAP activity for working solution (total 5 ml)

50 mM citrate buffer with 10 mM solution 5 ml
p-nitrophenylphosphate 18.375 mg

11) Naphtol AS-MX phosphate (10 mg/ml)

Naphtol AS-MX phosphate 10 mg
N, N-dimethlformamide (DMF) 1 ml

12) TRAP staining for working solution (total 5 ml)

50 mM sodium acetate with 50 mM sodium tartrate 5 ml
10mg/ml Naphtol AS-MX phosphate 50 µl
Fast red violet LB salt 0.6 mg

13) 10% formaldehyde (total 100 ml)

37% formalin 27 ml
DDW 73 ml

14) 95% Ethanol (total 100 ml)

Absolute ethanol 95 ml
DDW 5 ml

15) DEPC water (total 100 ml)

DEPC (0.01% v/v) 10 µl
DDW (Autoclaved) 100 ml

The DEPC water was incubated at 25 ºC overnight and autoclaved at 121 ºC

16) RIPA buffer

1 M Tris-HCl pH 7.4 0.35 ml
0.5 M NaCl 2.1 ml
100% Nonidet P-40 0.7 ml
10% Sodium deoxycholate 0.35 ml
20% SDS 0.035 ml
DWW 3.095 ml
Protease inhibitor (1 tablet/1.5 ml)
Phosphatase inhibitor 100x

17) 2x SDS-dye (total 10 ml)
- 1 M Tris-HCl pH 6.8
- 10% SDS
- 99.5% Glycerol
- Bromphenol blue
- DDW

18) 1.5 M Tris buffer pH 8.8 (total 500 ml)
- Trisma base
- DDW
Adjusted pH to 8.8 and autoclaved at 121 °C

19) 1 M Tris buffer pH 6.8 (total 500 ml)
- Trisma base
- DDW
Adjusted pH to 6.8 and autoclaved at 121 °C

20) PBST solution (total 1000 ml)
- 1x PBS
- Tween20

21) 10x PBS (total 1000 ml)
- NaCl
- KCl
- Na₂HPO₄
- KH₂PO₄
- DDW
Adjusted pH to 7.4 and autoclaved at 121 °C

22) SDS-polyacrylamide gel preparation

22.1) 8% Separating gel (total 8 ml)
- DDW
- 40% Acrylamide and Bis-acrylamide solution
- 1.5 M Tris-HCl pH 8.8
10% SDS 80 µl
10% APS 80 µl
TEMED 4 µl

22.2) 12% Separating gel (total 8 ml)
DDW 3.436 ml
40% Acrylamide and Bis-acrylamide solution 2.4 ml
1.5 M Tris-HCl pH 8.8 2 ml
10% SDS 80 µl
10% APS 80 µl
TEMED 4 µl

22.3) 5% Stacking gel (total 2 ml)
DDW 1.204 ml
40% Acrylamide and Bis-acrylamide solution 0.25 ml
1 M Tris-HCl pH 6.8 0.504 ml
10% SDS 20 µl
10% APS 20 µl
TEMED 2 µl

23) 5x Running buffer (total 1000 ml)
Trisma base 15.1 g
Glycine 94 g
SDS 5 g
DDW 1000 ml

24) Transfer buffer (total 1000 ml)
Trisma base 5.08 g
Glycine 2.9 g
SDS 0.37 g
DDW 800 ml
Absolute Methanol 200 ml

25) 100 mM Tris buffer pH 8.5
Trisma base 6.057 g
DDW 500 ml
Adjusted pH to 8.5 and autoclaved at 121 °C

26) ECL substrate

26.1) 90 mM Coumaric acid
- Coumaric acid: 14.8 mg
- DMSO: 1 ml

26.2) 250 mM Luminol
- Luminol: 44.3 mg
- DMSO: 1 ml

26.3) Solution A
- 100 mM Tris buffer pH 8.5: 2.5 ml
- 90 mM Coumaric acid: 11 μl
- 250 mM Luminol: 25 μl

26.4) Solution B
- 100 mM Tris buffer pH 8.5: 2.5 ml
- 30% H₂O₂: 1.5 μl

27) Film developer and fixer

The working solution was prepared and diluted with tap water (1:4)

28) Alkaline phosphatase assay (total 10 ml)
- 0.1 M sodium bicarbonate-carbonate buffer pH 10: 10 ml
- 2 mM MgSO₄ (0.24 mg/ml): 2.4 mg
- 6 mM p-nitrophenyl phosphate (2.22 mg/ml): 22.2 mg

29) 0.1% Triton-X 100 (total 40 ml)
- Triton-X 100: 40 μl
- DDW: 40 ml

30) The staining step for bone histomorphometry
- 0.1% Fast green (FCF) in 100 ml: 0.1 g
- 0.1% Safranin O in 100 ml: 0.01 g
- 1% Acetic acid in 100 ml: 1 ml
Table 1. The SAMP6 mice separation by using body weight

<table>
<thead>
<tr>
<th>No</th>
<th>Control group</th>
<th>Weight (g)</th>
<th>Cyperenoic acid Treated with</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1</td>
<td>22.0</td>
<td>M15</td>
<td>22.4</td>
</tr>
<tr>
<td>2</td>
<td>M2</td>
<td>21.7</td>
<td>M16</td>
<td>22.1</td>
</tr>
<tr>
<td>3</td>
<td>M3</td>
<td>21.4</td>
<td>M17</td>
<td>22.0</td>
</tr>
<tr>
<td>4</td>
<td>M4</td>
<td>20.3</td>
<td>M18</td>
<td>19.9</td>
</tr>
<tr>
<td>5</td>
<td>M5</td>
<td>18.8</td>
<td>M19</td>
<td>20.0</td>
</tr>
<tr>
<td>6</td>
<td>M6</td>
<td>20.2</td>
<td>M20</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>20.8</td>
<td>Average</td>
<td>21.21</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.1</td>
<td>SD</td>
<td>1.08</td>
</tr>
</tbody>
</table>

M* Mice code number

Table 2. The dehydration process for bone histomorphometry

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Time (h)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5% formaldehyde</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>70% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>80% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>96% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>96% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>100% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>100% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
<tr>
<td>100% ethanol</td>
<td>1</td>
<td>RT</td>
</tr>
</tbody>
</table>
Table 3. The staining process for bone histomorphometry

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Reagents</th>
<th>preparing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematoxylin</td>
<td>Carazzi’s Hematoxylin Solution (x2)</td>
<td>-</td>
</tr>
<tr>
<td>Fast green</td>
<td>0.1% Fast green (FCF)</td>
<td>Fast green: 0.1 g</td>
</tr>
<tr>
<td>(FCF)</td>
<td></td>
<td>Distilled water: 100 ml</td>
</tr>
<tr>
<td>Safranin O</td>
<td>0.1% Safranin O</td>
<td>Safranin O: 0.1 g</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>1% Acetic acid</td>
<td>Acetic acid, glacial: 1 ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distilled water: 99 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staining</th>
<th>Solution</th>
<th>Times (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>1) Xylene</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2) Xylene</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3) Xylene</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4) 96% Alcohol</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5) 96% Alcohol</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6) 70% Alcohol</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7) Tap water rinse</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8) Carazzi’s Hematoxylin Solution</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9) Running tap water</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10) 0.1% Fast green (FCF) solution</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11) 1% Acetic acid</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12) 0.1% Safranin O solution</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>13) 100% Alcohol</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>14) 100% Alcohol</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15) 100% Alcohol</td>
<td>Overnight</td>
</tr>
<tr>
<td></td>
<td>16) Xylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17) Mount with softmount (wako)</td>
<td></td>
</tr>
<tr>
<td>Expected results</td>
<td>Cartilage matrix</td>
<td>Underlying bone</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Orange to red</td>
<td>Green</td>
</tr>
</tbody>
</table>
VITA

I was born on 5th August 1986 in Nakhon-Sawan province, Thailand. I earned my undergraduate degree in Science from Department of Zoology, Faculty of Science, Chiang Mai University (Thailand) in 2008. During my undergraduate study, I received a “Phet-Thong-Kwang scholarship”, an academic award for undergraduate student, between 2005 to 2009 from Chiang Mai University. My research project focused on the anti-lung cancer activities of Thai medicinal plants.

After my bachelor degree, I received a prestigious scholarship from the Thailand Government "Science Achievement Thailand” to support my post-graduate studies for Master’s and Ph.D. degree. Under this support, I enrolled in the Graduate Program in the Department of Zoology for my Master’s degree and the Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University (Thailand) for my Ph.D.

In 2012, I graduated with a Master’s degree working with breast cancer cell line and Thai medicinal herb with female hormone-like compounds. In addition, during this period, I presented my research in two conferences, (1) Proceeding the 50th Kasetsart University Annual Conference (Thailand) and (2) Abstract the 16th Biological Science Graduate Congress (Singapore).

In 2013, I enrolled in a Ph.D. program in Biotechnology, Faculty of Science, Chulalongkorn University. My research investigates Thai medicinal plants for its effect on differentiation of osteoclasts. Part of my work was presented at the 27th Annual Meeting of the Thai Society for Biotechnology and International Conference “Innovative Biotechnology” and received the first prize for the best poster award.

In 2016, my work was published in European Journal of Pharmacology with the title "Diarylheptanoid from Curcuma comosa Rox. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway”. Furthermore, I had an opportunity to perform an in vivo experiment at Shinshu University, Nagano, Japan (Nov 2016 - Jun 2017) under the supervision of Professor Soichiro Nakamura and Associate Professor Shigeru Katayama. During this time, I had attended two conferences which are the 71st Japanese Society of Nutrition and Food Science, Okinawa, Japan and the 23rd General Meeting of the Japan Food Chemistry Association.