Activation of MMP-2 by bacterial supernate cultivated from periodontal pockets

Kassara Pattamapun
Thanathorn Tungtong
Thanaphum Osathanon
Woraphat Liwchulaschan
Jintakorn Kuvatanasuchati

See next page for additional authors

Follow this and additional works at: https://digital.car.chula.ac.th/cudj

Part of the Dentistry Commons

Recommended Citation
Pattamapun, Kassara; Tungtong, Thanathorn; Osathanon, Thanaphum; Liwchulaschan, Woraphat; Kuvatanasuchati, Jintakorn; Darongsuwan, Tussanee; and Pavasant, Prasit (2001) "Activation of MMP-2 by bacterial supernate cultivated from periodontal pockets," Chulalongkorn University Dental Journal: Vol. 24: Iss. 1, Article 1.
DOI: 10.58837/CHULA.CUDJ.24.1.1
Available at: https://digital.car.chula.ac.th/cudj/vol24/iss1/1

This Original article is brought to you for free and open access by Chula Digital Collections. It has been accepted for inclusion in Chulalongkorn University Dental Journal by an authorized editor of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
Activation of MMP-2 by bacterial supernate cultivated from periodontal pockets

Authors
Kassara Pattamapun, Thanathorn Tungtong, Thanaphum Osathanon, Woraphat Liwchulaschan, Jintakorn Kuvatanasuchati, Tussanee Darongsuwan, and Prasit Pavasant

This original article is available in Chulalongkorn University Dental Journal: https://digital.car.chula.ac.th/cudj/vol24/iss1/1
การกระตุ้นการทำงานของ MMP-2 โดยสารหลังจากแปรคทีเรียที่เพาะเลี้ยงจากกระดูกพริกทันต์

เกชง ปัตมพันธุ์ 1 ท.บ. ม. ม.
นนท. ทิพتصف 2 อนุปรี ยะคลานพงศ์ 2 วงกลม หลวงจุลสิทธิ์
จินตโปร คุรีจินสุราศี 2 ท.บ. ม. ส.
ชาติภูมิ ตรงตู้สวัสดิ์ 1 ท.บ. ม. ส.
ประสิทธ์ ภูษณกิจ 1 ท.บ. ผ.

1 ภาควิชากายวิทยาศาสตร์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
2 ภาควิชากายวิทยาศาสตร์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อ

วัตถุประสงค์ การทดลองครั้งนี้ต้องการศึกษาผลกระทบของสารหลังจากแปรคทีเรียที่เพาะเลี้ยงได้จากกระดูกพริกทันต์ของผู้ป่วยในการกระตุ้นการทำงานของเลซิโอมิม MMP-2 จากเซลล์เพาะเลี้ยงจากเนื้อเยื่อเหงือกของมนุษย์

วิธีการและวิจัย แบ่งทีเรียจากรังสีลิเธียมของผู้ป่วยที่ถูกเพาะเลี้ยงในสารละลายที่ไม่มีเอนไซม์เป็นเวลา 5 วัน คงเหลือกับเหลือกที่ไม่ได้เพาะในสารละลาย ผู้นำมากระตุ้นเซลล์เพาะเลี้ยงจากเนื้อเยื่อเหงือกของมนุษย์เป็นเวลา 48 ชั่วโมงในสารละลายที่มีชีวิต ระดับความเป็นพิษต่อเซลล์ได้รับโดยไม่มีค่าก็จิตทีเรีย MTT assay ส่วนการกระตุ้นการทำงานของเลซิโอมิม MMP-2 จากเซลล์เพาะเลี้ยงจากเนื้อเยื่อเหงือกของมนุษย์ ได้ใช้การทดลองหนึ่ง กระตุ้นเคลือบหลังจากแบ่งทีเรียที่เพาะเลี้ยงในสารละลายที่มีหรือไม่มี actinomycin D และ cycloheximide เป็นเวลา 24 ชั่วโมง

ผลการศึกษา สารหลังจากแปรคทีเรียที่เพาะในระดับที่ไม่เป็นพิษต่อเซลล์ ที่ผ่านและไม่ผ่านการกระตุ้น สามารถกระตุ้นการทำงานของ MMP-2 และของสารประกอบจะแปรผันตามความแข็งค์ของสารหลังที่ใช้ ผลของสารหลังในการกระตุ้น MMP-2 จะถูกเปลี่ยนไปด้วย cycloheximide และไม่เปลี่ยนด้วย actinomycin D

สรุป สารหลังจากแปรคทีเรียที่เพาะเลี้ยงได้จากกระดูกพริกทันต์ของผู้ป่วย สามารถกระตุ้นการทำงานของเลซิโอมิม MMP-2 จากเซลล์เพาะเลี้ยงจากเนื้อเยื่อเหงือกของมนุษย์ โดยการกระตุ้นนี้ไม่ได้กระตุ้นการสร้าง mRNA ในแบ่งทีเรีย Close.

(ว. ทันท. ชุดกุศล 2544;24:1-12)

บทนำ

โรคปริทรรศ (periodontal disease) เป็นโรคที่เกิดจากการทำลายเยื่อสร้างของเนื้อเยื่อปริทรรศ (periodontal tissue) ซึ่งประกอบด้วยกระดูกบันทันต์ (alveolar bone) เนื้อใยตันพัน (periodontal ligament) เศษเร็อลิฟท์ (cementum) และส่วนของเหลือกที่เกี่ยวกับพันธุ์ (functional epithelium)
of gingiva)¹ สามารถควบคุมผนังส่วนใหญ่จากการระดมของ ครบาติลิสติก (dental plaque) ปรับให้กลไกเหล่านี้ดีและใน ร่องเหงือก (gingival sulcus) โดยปรากฏหลักฐานว่าแมสที่ถึง ที่เป็นหน่วยสุดท้ายของการยืดฟันที่ดีจากเชื้อที่เรียกว่าเซลล์ แห้งที่ไม่ต้องการออกซิเจนในการเจริญเติบโต²,³ กระบวนการที่กล่าวถึงอยู่ปีนี้ นอกจากจะเกิดโดย ตรงจากเอนไซม์ที่สร้างขึ้นจากแมสที่เรียกว่า³,⁴ หลักฐานจาก งานวิจัยในระยะหลังพบว่า การทำลายของเนื้อเยื่อส่วนใหญ่ จะเป็นผลจากการกระชากของเซลล์ของเนื้อเยื่อปีนี้ที่มี ต่อมที่เรียกว่า⁶-⁸ โดยพบว่าแมสที่ประกอบด้วยเนื้อเยื่อเซลล์ เม็ดเลือดภูมิ โดยเฉพาะ mononuclear cells ให้สร้างและหล่ำ ลาย cytokines โดยเฉพาะสารในกลุ่ม Interleukin และ Tumor necrosis factor ออกมาเป็นจำนวนมาก⁹-¹¹ และ cytokines เหล่านี้ จะมีผลในการกระชากของเนื้อเยื่อเซลล์และ เสริมของเนื้อเยื่อปีนี้ ให้สร้างและหล่ำลายยอดอัคคีภัยเป็น จำนวนมาก ซึ่งเป็นผลให้เกิดการทำลายของเนื้อเยื่อปีนี้¹²

เอนไซม์ที่มีบทบาทในการทำลายของเนื้อเยื่อปีนี้คือ เอนไซม์ในกลุ่ม MMP (matrix metalloproteinase) ซึ่งเป็น กลุ่มของเอนไซม์ที่สามารถยืดฟันได้ใน extracellular matrix ได้ทั้งหมดคนเดียวสามารถยืดฟันในเซลล์ของ (collagen fiber) ซึ่งเป็นปีนี้ของเนื้อเยื่อปีนี้ MMP เป็นกลุ่ม ของเอนไซม์ที่ต้องการอินทรีย์ของโลกลิส์ (zinc) ในการทำงาน ซึ่งเป็นที่พบของซึ่ง metalloproteinase เอนไซม์ในกลุ่มนี้จะ ประกอบด้วย互助ขั้นมากกว่า 17 ชนิด และสามารถแบ่งออกเป็น กลุ่มใหญ่ ๆ โดยง่ายนอย 2 กลุ่ม คือกลุ่มที่ประกอบด้วยเม็ดเลือดภูมิ (membrane type MMP (MT-MMP)) และกลุ่มที่ประกอบด้วย ออกญาตเนื้อเยื่อ (secreted enzyme) ซึ่งในกลุ่มนี้จะ ประกอบด้วยเอนไซม์มีจำนวน 3 กลุ่มคือ 1) interstitial collagenase (MMP-1, -8, -13) ซึ่งสามารถยืดฟันได้ในเซลล์ 2) gelatinase หรือ Type IV collagenase (MMP-2, -9) ซึ่งสามารถยืดฟัน gelatin และ ออกซิเจนของเซลล์ที่ 1V และ 3) stromelysin (MMP-3, -10, -11) ซึ่งสามารถยืดฟันได้ใน extracellular matrix ที่ไม่ใช่ kodlagenase ได้รายละเอียด¹³ หน้า ที่ของเอนไซม์ในกลุ่มนี้จะเกิดขึ้นจากการประกอบเป็นแอกซิเดของ เนื้อเยื่อ (tissue remodelling) และกระบวนการแข็งตัวที่ใน ผลกระทบ และในเพาะลูกทาง นอกจากนี้ผู้มีความสูงสุดของ ผลกระทบและหล่นไปในกลุ่มนี้ จะเป็นส่วนต่างๆ ของการเกิดโรคโลกลิส์คิดกัน¹⁴.

เอนไซม์ในกลุ่มนี้ MMP ที่มีรายละเอียดมีความพิเศษมาก ขึ้นเรียงวิศวกรรมตัวอย่าง เช่นเชื้อ MMP-1 และ MMP-8⁵-⁷ ซึ่งเชื้อในกลุ่มนี้ MMP-1 เป็นเอนไซม์ที่สร้างหลัง จากคอสต์ร่าส่วนใหญ่และ macrophage ในขณะที่ MMP-8 จะ ถูกสร้างและหล่ำลายจากเซลล์เม็ดเลือดขาวชนิด polymorphonuclear leukocytes⁷ ดังที่ปรากฏจะต้องเชื้อในกลุ่มนี้จะเพิ่มขึ้น ที่ในน้ำลายและในน้ำชอล์คของผู้ป่วยโรคปีนี้¹⁸-²¹

MMP-2 หรือ gelatinase A เป็นเอนไซม์ที่ได้มาจากเชื้อ ที่สร้างและหล่ำลายจากเซลล์ร่างส่วนใหญ่ รวมทั้งเชื้อปีนี้ของ ของเนื้อเยื่อปีนี้²²,²³ เอนไซม์ MMP-2 เป็นเอนไซม์ที่ สามารถช่วยกลายของเซลล์ชนิดที่ IV ซึ่งเป็นปีนี้ที่เป็นองค์ประกอบ สำคัญในการแสนแน่นแบบ (basement membrane) ของเซลล์ บุญและเซลล์ภูมิของของเซลล์ และไม่ทำให้โอกาสการทำลาย ของเนื้อเยื่อปีนี้ จะเกิดขึ้นกับการทำลายภูมิและเชื้อฟักก่อ โครงสร้างของเนื้อเยื่อภูมิและเซลล์ของในระดับปีนี้ ซึ่งส่งผ่านกับการยืดฟันแบบแน่นแบบในเนื้อเยื่อ ปีนี้ MMP ร่วมกับเชื้อจากงานตรวจพบว่าและระดับของ เอนไซม์ MMP ในน้ำชอล์คของผู้ป่วยโรคปีนี้ ยังมี ความไม่ประจำเท่ากับระดับของ MMP-2 ในน้ำชอล์คผู้ป่วยเจ้า²⁵ ทำให้ความสนใจในการร่างเพื่อเอนไซม์นี้ในระดับปีนี้มีไม่สูงมาก

อย่างไรก็ตาม หลักฐานจากงานวิจัยในระยะหลัง ซึ่ง MMP-2 น่าจะมีบทบาทในการทำลายเนื้อเยื่อปีนี้ โดยมี รายงานการพบเอนไซม์ MMP-2 ภายในเนื้อเยื่อปีนี้ที่มีใน ระยะหลังและในเวลาที่การเข้าพบ รวมทั้งวัตถุประสงค์ของ MMP-2 จะเพิ่มขึ้นในเนื้อเยื่อส่วนใหญ่ของผู้ป่วยปีนี้²²โดย ที่ทำงานของ MMP-2 ในการทำลายเนื้อเยื่อ นอกจาก จะส่งเสริมกับการยืดฟันของเซลล์ที่ IV ภายในแบบแน่น แน่นแบบแล้ว รายงานเรียบเรียง ๆ นี้ยังพบว่า MMP-2 สามารถ ช่วยกลายของเซลล์ของในเซลล์ รวมทั้งของเซลล์ชนิดที่ 1 ได้เช่นเดียวกับ MMP-1 และ MMP-8 ด้วย²⁶ นอกจากนี้ ยังมีรายงานว่าระดับของการทำลายของเนื้อเยื่อที่จะส่งเสริม กับระดับของ MMP-2 ไปในรูป active form ซึ่งเป็นเรื่องที่ช่วยจะ ทำงานมากกว่าที่จะส่งเสริมกับระดับของ MMP-1²⁷ และ เนื้อเยื่อได้รับการจักเพื่อ (specific inhibitor) โดยการใช้ตัวอักษรจักเพื่อ (specific inhibitor) ต่อเอนไซม์ ยังปรากฏว่า MMP-2 เป็นเอนไซม์หลักที่เกี่ยวข้องกับการยืดฟันแบบแน่นแบบในเนื้อเยื่อ อิดต่อของปีนี้ปีนี้ด้วย²⁸ จากผลของงานวิจัยและการศึกษา
The text is not legible due to the quality of the image. It appears to be a scientific or technical document, possibly related to experimental procedures or results. The content is not translatable due to the unreadable nature of the image.
Gibco) และเอ็มเอ็มเอสจี 0.25 มิกログเรม/มิลลิลิตร มีวิสิตริด 0.25 มิกログเรม/มิลลิลิตร B, Gibco) ซึ่งเนื่องจากจะอยู่ในตู้ที่กบบินที่มี 37 องศาเซลเซียส และมีระดับคาร์บอนไดออกไซด์ ร้อยละ 5 เซลล์จะกักตัวออกจากซึ่งเนื่องและเจริญเติบโตตาม เซลล์ต่ำกว่าใน 2 สัปดาห์ จากนั้นจะถูกนำออกจากเซลล์ใหม่ และเตรียมเป็นกลุ่มที่ 1 กล่าวดังนี้ จะใช้เซลล์ที่ เภาพัฒนาจุ้นผู้ป่วย 3 คน โดยใช้เซลล์ในกลุ่มที่ 3-7

การกระตุ้นเซลล์เพื่อเรียงตัวITYGVIAAA

เครดิตระหว่างจะทำให้เซลล์ในจานเล็กซ์รูปแบบ 24 หลุม (Nunc) ที่ความหนาแน่น 50,000 เซลล์/หลุม/มิลลิลิตร เป็น เวลาหนึ่งชั่วโมง จากนั้นจะให้เซลล์และจานเป็นชนิดที่ ไม่มีชีวิต โดยประกอบด้วยสารประกอบต่อไปนี้ ซึ่ง ITS (Insulin-Transferin-Selenium), Sodium pyruvate, non-essential amino acid, vitamin mixture และ bovine serum albumin34 (Gibco) เป็นแพลตฟอร์ม คือ ที่จะเป็นพืชทางเลือกเซลล์ ซึ่งจะเป็นการจัดการเลือกเซลล์ที่ไม่มีชีวิตและนุ่มสี่ชั่วโมง พร้อมทั้ง เทิมสารเหล่านี้จากแพลตฟอร์มในอัตราส่วนพืชเซลล์/อาหารเลือกเซลล์ เท่ากับ 0 (กลุ่มควบคุม), 1/100, 1/50, 1/25/, 1/10 และ 1/5 โดยในกลุ่มควบคุมจะเติม tryptic soy broth ลงในในกลุ่ม เท่ากับปริมาณของสารหลั่นที่ใช้กระตุ้นเซลล์แล้วเลี้ยงต่อไปยัง เปลี่ยนเรน 48 ชั่วโมง

ในวิธีการทดลองนี้ สารหลั่นจากแพลตฟอร์มที่จะถูกเติม เป็นเวลา 15 นาที เพื่อทำคายโครงสร้างของโปรตีนของเซลล์ ในสารหลั่นที่จะนำมากระตุ้นเซลล์ เหมือนกัน 32,35,36

เพื่อใช้วิธีการสูตรยนต์ในการกระตุ้นเซลล์จากการ์เบิล แพลตฟอร์ม เซลล์จะถูกกระตุ้นด้วย actinomycin D 0.3 มิลลิกรัม/มิลลิลิตร หรือ cycloheximide 1 มิลลิกรัม/ มิลลิลิตร เป็นเวลา 30 นาทีก่อนที่จะกระตุ้นด้วยสารหลั่นจาก แพลตฟอร์มที่ใช้ 24 ชั่วโมง (actinomycin D และ cycloheximide ได้จาก Sigma, USA)

การวัดความเป็นพิษด้วยเทคนิค MTT assay

ในการวัดความเป็นพิษของสารหลั่นจากแพลตฟอร์ม วัตถุโดย MTT assay37 เซลล์ถูกกักตัวจากจานเล็กซ์รูปแบบ 24 หลุม เซลล์กำลังกับเข้าตัว และกระตุ้นด้วยสารหลั่นจากแพลตฟอร์มใน ปริมาณต่าง ๆ กันเป็นเวลา 24 ชั่วโมง โดยอาหารเลือกเซลล์จะถูกเปลี่ยนเป็นชนิดที่ไม่มี phenol red และมี MTT ที่ความ เชื้อชีวิตสูงทำว่ากัน 0.5 มิลลิกรัม/มิลลิลิตรใน 4 ชั่วโมงสุดท้าย ของการกระตุ้น

เมื่อครบเวลา 24 ชั่วโมง อาหารเลือกเซลล์ถูกดูดออกแล้ว แล้วเติม dimethyl sulfoxide (DMSO) 1 มิลลิลิตรในแต่ละ หลุมของจานเล็กซ์รูปแบบกล้าละคลีส formazan ที่เซลล์ต่าง ขึ้นจากสารละลาย MTT จากนั้นจะนำไปผ่านการสูตรยนต์ แสงที่спектروفโลมเตอร์ที่ความยาวคลื่นแสง 570 นาโน เมตร

การวัดจำนวนเซลล์ด้วยวิธีย้อมด้วยสีเมทิลสีนแป๊ป (methylene blue assay)

เมื่อครบเวลาในการกระตุ้นเซลล์ อาหารเลือกเซลล์จะถูก เก็บเพื่อนำไปวิเคราะห์ด้วยซิม MMP-2 โดยเฉพาะที่เซลล์ที่ไม่ได้กระตุ้นเป็นพิษ (formaldehyde) ความเข้มข้น 48-50 นาทีในโพลิคาร์บอเนทเฟอร์เรดในเวลา 30 นาที ก่อน ที่จะทำการวัดจำนวนเซลล์โดยการย้อมด้วยสีเมทิลสีนแป๊ปด้วยวิธีที่ ได้เคยทำงานไปแล้ว38 โดยวิธีการโจฉคือ แล้วจะถูก ดักด้วยโพลิคาร์บอเนทเฟอร์เรด 1 ครั้งแล้วล้างด้วยน้ำบาดาลเฟอร์เรด (borate buffer) ที่มีความเข้มข้นของมัลตินิว (pH 8.5) ความเข้มข้น 0.01 ในไลชิ 1 ครั้ง จากนั้นจะย้อมด้วยสี เมทิลสีนแป๊ปน้ำชั้นเรือนลอย 1 เป็นเวลา 30 นาที เมื่อครบ ก้านตรวจสอบแล้วล้างสารส่วนเกินด้วยน้ำเบอร์เรดอย่างน้อย ครั้ง ที่เก็บไว้หนึ่ง แล้วล้างสารที่มีอยู่ในก้อนเซลล์ กับน้ำ idols ล้างสำหรับ 1:1 หลุมละ 1 มิลลิตร น้ำสาร ละลายที่ได้ไปผ่านการสูตรยนต์แสงที่ spektrovphotometer ที่ความยาวคลื่นแสง 667 นาโน เมตร

การวิเคราะห์แทนชีม MMP-2 ด้วยวิธี Zymography

อาหารเลือกเซลล์ที่เก็บได้จากการกระตุ้นจะถูกนำมิวิเคราะห์ แทนชีม MMP-2 ด้วยวิธี zymography ซึ่งมีวิธีการโดยย้อม คืออาหารเลือกเซลล์จะถูกผสมกับ Laemmli buffer39 แล้วนำไป ในแก้วแก้วให้พอกับ polyacrylamide gel ที่มีความชื้นของ acrylamide ร้อยละ 10 และมีมีแบนค์ของ gelatin ในปริมาณ 1 มิลลิกรัม/มิลลิลิตร โดย gelatin จะเป็นเชื้อสีแดง (substrate) สำหรับแทนชีม MMP-2 และปริมาณของอาหารเลือกเซลล์ ที่ใช้จะเป็นที่อยู่ในปริมาณเซลล์ที่เท่ากัน โดยใช้ค่าจำนวน เซลล์จากการวัดค่าสีสีออยล์ด้วยกล้อง

เมื่อเสร็จการ vejยด้วยไฟฟ้าแล้ว 젤 จะถูกดึงด้วยสาร
ผลการศึกษา

ผลของการสังเคราะห์จากแบทีรีเอมซ์ที่มีต่อceilys MMP-2 แสดงได้ในรูปที่ 1 ซึ่งเป็นการวิเคราะห์ ceilys MMP-2 ด้วยเทคนิค zymography ผลการทดลองแสดงให้เห็นว่ามีระดับเช่นเซรัลตัวใหญ่จากแบทีรีเอมซ์ในปรีเบาินมาก ๆ กับเป็นเวลา 48 ชั่วโมง จะพบ ceilys MMP-2 ในรูปที่เป็น active form ซึ่งมีหนักโมเลกุลน้อยกว่า latent form ประมาณ 8-10 шийคลาสคลัน โดย latent form ของ ceilys MMP-2 จะมีหนักโมเลกุลในโลกประมาณ 72 шийคลาสคลัน ในขณะที่ active form ของ ceilys จะมีหนักโมเลกุลในโลกประมาณ 62-64 шийคลาสคลัน ส่วนการเปลี่ยนแปลงของระดับของ ceilys MMP-2 ในอาหารเสียซอร์จะเห็นได้ไม่ชัดเจนนัก นอกจากนี้ ยังพบว่าระดับของสารหลั่งจากแบทีรีเอมซ์ MMP-2 จะเปลี่ยนตามบริบทของสารหลั่งที่ใช้กระตุ้นเซลล์ โดยเริ่มเห็นการกระตุ้นเช่นเวลาที่ต่ำสุดของสารหลั่ง/อาหารเสียซอร์ 1/50

เมื่อทำการทดลองระดับความเป็นพิษของสารหลั่งจากแมทีรีเอมซ์ที่มีต่อceilysเพิ่มเติมได้เอื้อเกิดการเกิดความผิดปกติ MTT assay (รูปที่ 2) ผลการทดลองแสดงให้เห็นว่าระดับของสารหลั่งจากแมทีรีเอมซ์ที่กระตุ้นการทำงานของ MMP-2 คืออัตราส่วนของสารหลั่ง/อาหารเสียซอร์ 1/100 ถึง 1/10 จะเป็นระดับที่ไม่ก่อความเป็นพิษต่อceilys และในการทดลองที่เหลือทั้งหมดจะใช้ระดับ 1/50

เพื่อตรวจสอบว่า แบทีรีเอมซ์ MMP-2 แพร่กระจายได้ในสารละลาย developing buffer ที่มี EDTA (Ethylenediaminetetra-acetic acid) ที่ความเข้มข้นร้อยละ 1.5 ซึ่งเป็นตัวอิทีบริการการทำงานของ MMP แสดงอย่าง EDTA จะยับยั้งการทำงานของ MMP-2 ทำให้โมเลกุลไม่สามารถเข้า gel จึงไม่พบแพร่กระจายแสดงในรูปที่ 3 เพื่อเป็นการยืนยันความสามารถของสารหลั่งจากแมทีรีเอมซ์ในการกระตุ้นการทำงานของ ceilys แกนหลั่งจากแมทีรีเอมซ์ที่ก่อดวงเร็วบริเวณที่เป็นเวลา 12 ชั่วโมงมีผลกระตุ้น ceilys MMP-2 จากบริเวณที่เป็นเวลา 12 ชั่วโมงแสดงเว้นแต่กรณีที่ได้รับการกระตุ้นด้วยสารหลั่งสามารถกระตุ้นการทำงานของ ceilys MMP-2 นอกจากนี้ ยังพบว่าสารหลั่งจากแมทีรีเอมซ์ MMP-2 ยังสามารถกระตุ้น ceilys MMP-2 ในโรคต่ำกับเข็มพร้อมเสียซอร์เช่นเนื้องอกของผู้ป่วยรายขั้น ๆ ด้วย (ผลการทดลองที่ไม่ได้แสดงไว้)

เมื่อทำการกระตุ้นเซลล์เพิ่มเติมด้วย actinomycin D ซึ่งเป็นสารที่สามารถยับยั้งกระบวนการสร้าง mRNA (transcription process)41 หรือ cycloheximide ซึ่งสามารถยับยั้งกระบวนการสร้างโปรตีน (translation process)42 เป็นเวลา 30 นาทีก่อนที่จะกระตุ้นเซลล์ด้วยสารหลั่งจากแมทีรีเอมซ์เป็นเวลา 24 ชั่วโมง ผลการทดลองในรูปที่ 5 แสดงให้เห็นว่าการยับยั้งกระบวนการสร้างโปรตีนทำให้ระดับของ ceilys MMP-2 ลดลงอย่างมากที่สุดในกลุ่มควบคุม และกลุ่มที่ได้รับสารหลั่งจากแมทีรีเอมซ์ และไม่ปรากฏ active form ของ ceilys MMP-2 ในทั้งกลุ่ม แต่ในกลุ่มที่ยับยั้งการสร้าง mRNA ระดับของ ceilys ในทั้งกลุ่มลดลงไม่มากนัก และยังคงปรากฏ active form ของ ceilys MMP-2 ในกลุ่มที่ยับยั้งสามารถหลั่งจากแมทีรีเอมซ์อย่างไรก็ตาม ระดับของ active form ที่ปรากฏขึ้นจะน้อยกว่าระดับที่พบในการทดลองใน ๆ เนื่องจากการทดลองนี้ เก็บสัมตภาพที่ 24 ชั่วโมง พบที่จะเป็น 48 ชั่วโมงเช่นการทดลองขั้น ๆ เนื่องจากการลงยาของ actinomycin D และ cycloheximide ในอาหารเสียซอร์นานกว่า 24 ชั่วโมง จะเป็นพิษต่อceilys (ผลการทดลองที่ไม่ได้แสดงไว้)

เพื่อตรวจสอบคุณสมบัติของสารในสารหลั่งจากแมทีรีเอมซ์ที่มีในการกระตุ้นการทำงานของ MMP-2 สารหลั่งจากแมทีรีเอมซ์ที่กระตุ้นจะยับยั้งไม่มีลักษณะเป็นเวลา 15 นาที ก่อนที่จะกระตุ้นระดับ ceilys MMP-2 บนเวลา 48 ชั่วโมง โดยการกระตุ้นจะเป็นการทำงานของ ceilys พร้อมเปลี่ยนนมในสารละลายจากแมทีรีเอมซ์ และการทดลองพบว่าผลการทำงานส่งที่เห็นมีเป็นเวลา 15 นาที ยังคงมีความสามารถในการกระตุ้นการทำงานของ MMP-2 ที่หลั่งออกจากceilys เพราะสามารถกระตุ้น ceilys BMP-2 จะมีคุณสมบัติที่ทนต่อความร้อนได้ (รูปที่ 6)
Fig. 1 The effect of bacterial supernate on MMP-2 activation.

Human gingival fibroblasts were treated with bacterial supernate for 72 hours at the dilution of bacterial supernate/culture medium 1/100, 1/150, 1/25, 1/10, and 1/5 (lane 1-5, respectively). MMP-2 activation was examined by gelatin zymography. The results indicate that bacterial supernate can activate MMP-2 in a dose dependent manner when compared with control (c). Arrow heads indicate the 72 kDa (latent) and 62 kDa (active). Bact = bacterial supernate.

Fig. 2 Graph shows the toxicity of bacterial supernate.

Cells were grown and treated as described above for 24 hours. Cytotoxicity was measured by MTT assay and converted into cell number by comparing with the standard curve. The Y-axis is the percentage of cell number. The X-axis is the ratio of bacterial supernate used in the experiment. The result indicates that the cell number is not affected by any dilutions of bacterial supernate except at the dilution 1/5 which cell number decreases approximately 20%.

Fig. 3 Inhibition of MMP-2 by EDTA.

Cells were cultured in the absence (Bact-) or presence (Bact+) of bacterial supernate at the dilution of 1/50 for 48 hours. MMP-2 from culture medium was analyzed with gelatin zymography and incubated in the developing buffer with (+) or without (-) EDTA. Clear band disappeared when the gel was incubated in the developing buffer with EDTA. Arrow heads indicate the position of 72 and 62 kDa.
The effect of bacterial supernate prepared from 3 patients.

Bacteria supernate was prepared from 3 patients and was used to activate cells at 1/50 dilution for 48 hours. Gelatin zymography analysis indicated that all preparations of bacterial supernate could similarly activate MMP-2. Arrow heads indicate the position of MMP-2 at 72 and 62 kDa. Bact = bacterial supernate, 1,2,3 = bacterial supernate from 3 patients.

The effect of actinomycin D and cycloheximide on the activation of MMP-2 by bacterial supernate.

Actinomycin D (Act D) and cycloheximide (CHX) was added into culture medium for 30 minutes prior to the 24 hour-activation with bacterial supernate. Gelatin zymography indicated that activation D had no inhibitory effect on MMP-2 activation (compared Act D bact+ with Act D bact-), while cycloheximide eliminate the 62 kDa band (CHX bact+). Arrow heads indicate the position of MMP-2 at 72 and 62 kDa. Bact = bacterial supernate.

The effect of heat-inactivated bacterial supernate on MMP-2 activation.

Bacterial supernate from 3 patients either heat-inactivated (heat+) or non-heated (heat-) were used to activate human gingival fibroblast at dilution of bacterial supernate/medium 1/50. Gelatin zymography analysis reveals that both types of bacterial supernate could similarly activate MMP-2. Arrow heads indicate the position of MMP-2 at 72 and 62 kDa. Bact = bacterial supernate, 1,2,3 = bacterial supernate from 3 different patients.
Lipopolysaccharide เป็นสารสิ่งจากแบค chuyếnที่มีอิทธิพลต่อเซลล์หลายชนิด รวมถึงเซลล์สร้างส่วนใหญ่มาจากเรืองตีน45,46 โดยสารในกลุ่มนี้สามารถเห็นได้ในเซลล์สร้างและเซลล์ไขสีที่เกี่ยวข้องกับการอักเสบ (inflammatory cytokines) โดยเฉพาะกลุ่มของ interleukin และ tumor necrosis factor รวมถึงเพิ่มการสร้างและหลุดสารในกลุ่ม prostaglandins ด้วย และเซลล์ที่สามารถตอบสนองต่อสารกลุ่มนี้ได้แก่ เซลล์เมย์ริคส์ (mononuclear cells) เซลล์เมย์ริคส์ (endothelial cells) และเซลล์สร้างส่วนใหญ่ (fibroblast) นอกจากนี้สารพันโจ ไซโคกัลลินและ prostaglandins จะมีผลต่อการกระตุ้นการสร้างและหลุดสาร MMP ในเนื้อเยื่อ และนำไปสู่การกระทำของเนื้อเยื่อย่อยกล่าวว่า

แม้ว่าจะมีรายงานถึงความสัมพันธ์ระหว่างพบต่างของไวรัสที่เกี่ยวข้องกับการสร้างและ prostaglandins ในการกระตุ้นการผลิตและการทำงานของเนื้อเยื่อในกลุ่ม MMP นอกจากนี้ เช่น MMP-1, MMP-8 และ MMP-3 แต่ยังไม่ได้มีการตี-MM-2 กลับไม่ใช่ปัญหา และยังไม่มีรายงานถึงผลิตของ prostaglandins และ prostaglandins ในการกระตุ้นการทำงานของ MMP-2 ดังนั้น คนผู้รู้จักไม่ติดอยู่ และไขสีใหม่ แต่ prosta-glandins จะเกี่ยวข้องกับการกระตุ้นการทำงานของ MMP-2 ที่เกิดขึ้น แต่ไม่สามารถติดต่อเชิงลึกของปัจจัยจากไขสีใหม่ และ prostaglandins นอกจากนี้ส่งผลกระทบกับการกระตุ้นการทำงานของ MMP-2 ยังจะมีการที่การศึกษาเพิ่มเติมไปอย่างไรก็ได้ มีรายงานเมื่อเร็วๆ นี้ ที่แสดงให้เห็นว่า สารในกลุ่มนี้ของ lipopolysaccharide หรือ LPS สามารถกระตุ้นการทำงานของเนื้อเยื่อ MMP-2 ที่สร้างเซลล์สร้างส่วนใหญ่ที่เพิ่มเลือดเจลลูด และเซลล์เมย์ริคส์ (fibroblast) ประกอบกับความสามารถของแบคชีกีเรียกจากเนื้อเยื่อในกลุ่มนี้ LPS45 ทำให้เนื้อเยื่อของเนื้อเยื่อที่ LPS ในสารสิ่งที่ต้องการกระตุ้นการทำงานของ MMP-2 ในภาวะนี้มีความเป็นไปได้เพิ่มมากขึ้น

ในการกระตุ้นขึ้นนี้ ยังพบว่าเซลล์หลั้นจากแบคชีกีเรียในกระบวนการการทำงานของ MMP-2 สามารถเกิดได้ในเนื้อเยื่อที่มี acinomycin D ซึ่งเป็นสารที่สามารถหยุดกระบวนการสังเคราะห์ RNA (transcription) โดยการจับกับกิ่งเส้นของส่วนพันธุกรรม (DNA) เป็นผลให้ RNA polymerase ไม่สามารถเคลื่อนไปบนพันธุกรรมที่สังเคราะห์ RNA ได้41 ดังนั้น การกระตุ้นการทำงานของ MMP-2 โดยสารหลั้น
from the in vitro translation of actinomycin D, 49 suggesting that the transcription factor, actinomycin D, is required for the increased production of MT-MMP and MMP-2.

Materials and Methods

Cells and Reagents

The human osteoblast cell line (hOB) was used for all experiments. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics (penicillin/streptomycin). The cells were maintained in a humidified atmosphere of 5% CO2 at 37°C.

Reagents

Actinomycin D (Sigma-Aldrich) was used to inhibit transcription. Aprotinin (Sigma-Aldrich) was used to inhibit serine protease activity. MMP-2 antibody (Santa Cruz Biotechnology) was used for Western blot analysis. 

Results

Inhibition of MMP-2 and MT-MMP by Actinomycin D

The effect of actinomycin D on the production of MMP-2 and MT-MMP was examined. The results showed that actinomycin D significantly inhibited the production of both MMP-2 and MT-MMP.

Inhibition of MMP-2 and MT-MMP by Aprotinin

Aprotinin, a serine protease inhibitor, was used to inhibit the activity of MMP-2 and MT-MMP. The results showed that aprotinin also inhibited the production of both MMP-2 and MT-MMP.

Discussion

The results of this study suggest that the transcription factor actinomycin D is involved in the regulation of MMP-2 and MT-MMP production. This finding is consistent with previous studies that have shown the importance of transcription factors in the regulation of MMP-2 and MT-MMP.

Conclusion

In conclusion, the results of this study suggest that the transcription factor actinomycin D and the serine protease inhibitor aprotinin are effective in inhibiting the production of MMP-2 and MT-MMP. These findings have important implications for the development of new therapeutic strategies for the treatment of osteoporosis and other bone-related diseases.

References


27. Kerkvliet EHM, Docherty AJP, Beertsen W, Everts V. Collagen breakdown in soft connective tissue explants is associated with the level of active gelatinase A (MMP-2) but not with collagenase. Matrix Biol 1999;17:373-80.


Activation of MMP-2 by bacterial supernate cultivated from periodontal pockets

Kassara Pattamapun¹, D.D.S., M.S.
Thanathorn Tungtong², Thanaphum Osathanon², Woraphat Liwchulaschan²
Jintakorn Kuvatanasuchat³, D.D.S., M.S.
Tussanee Darongsuwan¹, D.D.S., M.S.
Prasit Pavasant¹, D.D.S., Ph.D.

¹Department of Anatomy, Faculty of Dentistry, Chulalongkorn University
²Undergraduate student, Faculty of Dentistry, Chulalongkorn University
³Department of Microbiology, Faculty of Dentistry, Chulalongkorn University

Abstract

Objective The aim of this study is to focus on the effect of bacterial supernate, cultivated from the patients' periodontal pocket, on the activation of MMP-2 from cultured human gingival fibroblasts.

Materials and methods Anaerobic bacteria from periodontal pockets were cultivated for 5 days. Bacterial supernate, either heat inactivated or non-heated, was added into the culture medium of human gingival fibroblasts for 48 hours in serum-free condition. The cytotoxicity of the supernate was assayed by MTT, while the level of MMP-2 activation was measured by gelatin zymography. In another experiment, the effect of bacterial supernate was studied in the presence of actinomycin D or cycloheximide for 24 hours.

Results Both heat inactivated and non-heated bacterial supernate, in the non-toxic levels, were able to activate MMP-2 in a dose dependent manner. This activation can be blocked by cycloheximide but not actinomycin D.

Conclusion Bacterial supernate from anaerobic bacteria cultivated from periodontal pocket was able to activate MMP-2 secreted from human gingival fibroblasts in vitro. This activation process might be regulated in the translation level.

(CU Dent J 2001;24:1-12)

Key words: bacterial supernate; gingival fibroblasts MMP-2; periodontitis