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Abstract 
Uttarakhand, a Himalayan state of India, may experience an increase in temperature of 

1.4°C to 5.8°C by 2100 due to global warming. The rise in temperature may melt the glaciers 
of the state and may have some significant impact on the rainfall. In this study, we have 
quantified the changes in the rainfall of the state. Also, an attempt has been made to evaluate 
the impact of climate change on rainfall. The future rainfall can be estimated by using a global 
circulation model (GCM). However, due to the very coarse spatial resolution of the different 
GCM, we cannot use them directly. For matching this spatial inequality between the GCM 
output and historical precipitation data, we used the statistical downscaling technique. In the 
present study, we have examined the suitability of the artificial neural network with principal 
component analysis for downscaling the rainfall for different hilly districts of the state. We used 
the GCM model developed by Canadian Earth System Model, and the Indian metrological 
department gridded rainfall data. We performed the analysis for the different scenarios to 
visualize the impact of climate change on rainfall trends for all nine hilly districts of 
Uttarakhand. Results show that there was a clear indication of climate change in upper 
Himalayan Districts like Pithoragarh, Rudraprayag, and Chamoli, which was observed from 
the peak of monthly rainfall. The percentage change of monsoon rainfall in the future may go 
up to 200 % in the case of RCP8.5, and the change maybe around 180% for RCP4. Also, the 
volume of rainfall may increase in the case of RCP8.5 from July to September as compared to 
the historical data, i.e., there may be a shifting of monsoon rainfall in the future. 
 

Keywords: Downscaling; Climate change; Rainfall; ANN; Scenario; PCA 

Introduction 
 Uttarakhand is a Himalayan state of India, 
and more than 80 percent of its area falls under 
the hilly region [1]. The state has extended forest 

cover, located at high altitude, and has deep 
glacier mass at the high altitude area of the state 
[2]. This geographical location of the state has 
made it more vulnerable to climate change [3-4]. 
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As has been observed, the state is highly affected 
by frequent flash floods and cloudburst during 
monsoon season, especially at high altitude areas. 
The historical data shows that the frequency of 
these events is increasing year after year. As per 
the report of the Inter-governmental Panel on 
Climate Change (IPCC) 2013-AR5, the predicted 
increase in temperature from the year 1990 to 
2100 will be approximately 1.4°C to 5.8° C, 
which will melt the glaciers of the state [5–6]. 
The report also said that the change in local 
precipitation and temperature due to climate 
change might increase the hazards like droughts 
and floods as well as it may increase their 
severity [7-8]. Therefore, there is a need to study 
the spatio-temporal change of rainfall of the 
state. So that appropriate adaptation policies can 
be taken up to mitigate the impact. 
 In recent years, different groups of researchers 
and scientists around the world are using General 
Circulation Model (GCM) models to predict the 
possible changes that may occur due to climate 
change [9]. The GCM models are capable of 
predicting the expected change in climatic 
conditions for the future [5, 10–12]. However, 
the GCM models are producing results on a very 
large grid system, i.e., a grid size of 200 to 650 
km [13]. Due to this large grid size, the results 
obtained are not precise enough to be used 
directly to study the variation of different 
hydrological impacts on a local scale [14]. To 
overcome these scale parameters, the down-
scaling methods which are capable of filling the 
rift among the local scaled climatic inputs and 
global scaled climatic parameters can be used 
[15–17]. 
 The downscaling is a procedure that relates 
local and regional scale climate variables to the 
larger-scale atmospheric components, i.e., down-
scaling joins the gap between large and local 
scale climatic data [18–19]. The downscaling is 
necessary as the GCM outputs are of insuffi-
cient spatial resolution, causing an insufficient 
representation of orography and land surface 

characteristics. The normal spatial interoperation 
may not represent the features that may have 
important impacts on the local climate. The scale 
mismatch problem can be overcome by using 
Regional Climate Model (RCM) or by using the 
Statistical Downscaling techniques [2, 20–22]. 
The RCM develops a finer resolution regional 
climate model that is driven by boundary con-
ditions simulated by the global GCMs at coarser 
scales. But the RCM is computationally costly 
and time-consuming [18, 23]. On the other hand, 
the statistical downscaling models derive a 
relationship between the large-scale atmospheric 
fields and local variables [5]. The model is 
simple in nature and can be implemented with 
less computational effort. As such, this study 
uses the statistical downscaling technique. 
 The statistical downscaling model can be 
developed by using the regression-based model. 
Linear and non-linear based regression models 
have been used to map the relationship between 
the large-scale atmospheric fields and local 
variables [24]. On the other hand, the artificial 
neural network (ANN) is one of the simplest but 
robust models for mapping the non-linear relation 
between the input and output variables. The ANN 
is considered to be a better model than the non-
linear regression model as it can capture the 
hidden non-linearity between the input and 
output patterns. As such, the study uses the ANN 
model to develop the statistical downscaling 
model. 
 
Data and model 
 The second-generation Canadian Earth System 
Model (CanESM2) is the fourth generation 
coupled global climate model developed by the 
Canadian Centre for Climate Modelling and 
Analysis (CCCma) of Environment and Climate 
Change Canada. CanESM2 represents the 
Canadian contribution to the IPCC Fifth Assess-
ment Report (AR5). This CanESM2 model is a 
combination of the CanCM4 model and the 
Canadian Terrestrial Ecosystem Model (CTEM), 
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which based on the terrestrial carbon cycle [25]. 
The CTEM model explains the land-atmosphere 
carbon transaction phenomena. CanESM2 consists 
of three scenarios: RCP2.6, RCP4.5, and RCP8.5. 
The RCP (Representative Concentration Pathways) 
are four greenhouse gas concentration (not 
emissions) trajectories selected by the IPCC for 
its Fifth Assessment Report (AR5) [23, 26]. The 
four RCPs, RCP2.6, RCP4.5, RCP6.0, and 
RCP8.5, are described after a reasonable range 
of radiative forcing values projected in the year 
2100. The RCP scenarios, i.e., RCP2.6, RCP4.5, 
RCP6, and RCP8.5, are labeled after a possible 
range of radiative forcing value of 2.6, 4.5, 6, 
and 8.5 W m-2, respectively by the year 2100. 
The different RCP scenarios considered in this 
study are RCP2.6 RCP4.5 and RCP8.5. RCP re-
presents a broad area of possible problems 
related to climate change like the effect of 
greenhouse gases, air pollutants, and their 
emissions and different land-use scenario. RCP8.5 
consider the highest, and RCP2.6 consider the 
lowest scenarios of greenhouse gases. In this 
study, we have used the CanESM2 model. The 
location of the GCM point at Uttarakhand is 
shown in Supplementary Material (SM) 1. 
 There are 26 numbers of atmospheric 
variables available in the CanESM2 model, as 
shown in SM 2. The Principal Component 
Analysis (PCA) has been carried out to reduce 
the dimensionality of the data set. Principal 
component analysis, also recognized as the 
Karhunen Loeve transform, is one of the 
commonly accepted techniques for reducing the 
dimensionality [27–28]. The PCA converts a set 
of correlated M-dimensional predictors into a 
set of N-dimensional uncorrelated vectors, called 
principal components, by using a linear combi-
nation. During transformation, it is necessary to 
maintain that maximum information captured 

by the original data set is saved in the first few 
dimensions of the new set. SM3 shows the score 
of different predictor after the principal component 
analysis. In the present study, PCA was done to 
decrease the dimensionality of the predictors 
from 26 to the 6 (the selected variables are 
arbitrary and cannot be identified by their 
name), which contains the 99.978% information 
of the original data in the form of scores (SM 3). 
The correlation matrix verifies that the 1000 hPa 
wind speed, 1000 hPa wind direction, total 
precipitation, mean temperature at 2 m, specific 
humidity at 850 hPa, specific humidity at 500 
hPa, 500 hPa wind direction, 500 hPa divergence 
are the major predictors with high correlation 
with predictand. The new data set is much lesser 
in size than the original set, and have the 
descriptions for nearly all of the specimen 
variance. This dataset is used as input to the 
statistical downscaling model. SM 4 shows the 
correlation between predictors before PCA, and 
SM 5 shows the correlation between predictors 
after PCA. 
 The Indian Metrological Department (IMD) 
gridded data, from 1961 to 2005 is used for 
historical rainfall data for all the nine districts of 
Uttarakhand. The IMD data is available at 0.25 
× 0.25 grid size, as shown in SM 6. 
 
Methodology 
1) Study area 
 Uttarakhand is located in the great Himalayas, 
lies between 28043’ and 31027’N latitudes and 
77034’ and 81002’E longitudes (Figure 1). The 
state spread in about 53,483 km2 of the geogra-
phical area. Out of the total geographical area, 
mountains and hills cover about 46,035 km2 of 
the area. Along with natural beauty, the state is 
also famous for natural calamities, such as 
cloudbursts, landslides, and flash floods. 
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Figure 1 Location map of the study area. 

 
2) Data used 
2.1) Rainfall data 

Uttarakhand encounters massive precipitation, 
especially from June to August, i.e., monsoon 
season, in the form of flash flood due to its 
location at high altitude. Generally, the climate 
of the Uttarakhand is cold, with a high wind 
velocity during the year. As per the rainfall data 
collected from the IMD for all the thirteen 
districts of Uttarakhand, the normal annual 
rainfall of the state is about 1800 mm. The 
monthly average rainfall in all hilly districts are 
shown in SM 7, which represents the variation 
of average rainfall from 1150 mm to 600 mm in 
different districts of Uttarakhand. 

Table 1 shows the location of the rain gauge 
stations, their altitudes, and the extent of data 

available for training, testing, and validation of 
the ANN model. 

The working of the PCA-ANN approach has 
been shown in SM 8, and the standard procedure 
of downscaling is shown in Figure 2. Figure 3 
shows the working chart for down-scaling using 
ANN. As shown in Figure 2 and Figure 3, firstly, 
we established a relationship between observed 
and large scale data, i.e., predictands and predic-
tors, respectively. Here, the rainfall is predictand, 
and GCM data is the predictor. The selection of 
predictors has been performed using PCA. The 
selected predictands and historical rainfall data 
have been used to calibrate and validate the 
model. This validated model, i.e., the ANN model, 
is used to predict the rainfall under different 
RCP scenarios, as explained in Figure 2.
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Table 1 Data used for calibration and validation of the ANN Model 
Station Name Longitude 

(degree),  
N 

Latitude 
(degree), 

E 

Altitude 
(m) 

Data used to 
develop ANN 

model (Period) 

GCM used 

Uttarkashi 78.44 30.72 1158 1961-2005 CanESM2 
Chamoli 79.55 30.56 6967 1961-2005 CanESM2 
Tehri Garhwal 78.48 30.33 1750 1961-2005 CanESM2 
Almora 29.58 79.64 1642 1961-2005 CanESM2 
Bageswar 29.84 79.64 1004 1961-2005 CanESM2 
Champawat 29.33 80.09 1615 1961-2005 CanESM2 
Pauri 30.13 78.77 1814 1961-2005 CanESM2 
Pitthoragarh 29.58 80.21 1514 1961-2005 CanESM2 
Rudraprayag 30.28 78.98 895 1961-2005 CanESM2 

 

 
Figure 2 The flowchart of the downscaling process. 

 

 
Figure 3 The working chart for downscaling using ANN. 
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3) Artificial Neural Network (ANN) model 
for downscaling 

Artificial Neural Networks (ANNs), along 
with PCA, has been applied to develop the 
downscale model. The Feed Forward Back 
Propagation (FFBP) algorithm is used to develop 
a multi-layer perceptron (MLP) ANN model for 
downscaling of precipitation in the nine hilly 
districts of Uttarakhand. 

An artificial neural network (ANN) is a 
knowledge processing method based on the 
different data which has a similar comparable 
function as neurons of the human brain [29–30]. 
MLPs are the commonly accepted and the 
simplest type of ANN model [31]. The MLPs are 
used to derive the relationship between different 
inputs and outputs [4, 32]. The multi-layer 
perceptron is feed-forward networks that comprise 
one or more hidden layers, as shown in SM 8. 
The MLP used in the present study consist of 
three layers, i.e., an input layer, a hidden layer, 
and an output layer. The model is trained using 
the Levenberg–Marquardt (LM) algorithm 
(Levenberg, 1944; Marquardt, 1963), which is 
an effective learning strategy for multi-layer 
feed-forward networks [33–34]. This method is 
a revised variant of the classic Newton approach 
for obtaining an optimum result for any optimi-
zation problem. 

The parameters used in the ANN model are 
given in Table 1 and Table 2. There are six 

inputs to the model, as obtained from the 
principal component analysis. The only output 
from the model is the rainfall. An experiment 
has been conducted to find the number of 
neurons in the hidden layer. The experiment 
shows that the model is providing the best 
performance when the number of neurons in the 
hidden layer is 12. 

 
4) Statistical evaluators 

The different statistical parameters are used 
for the performance evaluation of the models 
[35–36]. In the present study, RMSE, R2, and 
NSE are used to verify the results of the ANN 
model during the calibration and validation 
process, as given in Eq. 1, 2, and 3, respectively. 

 
4.1) Root mean square error (RMSE) 

The root-mean-square deviation (RMSD) or 
root-mean-square error (RMSE) is commonly 
used to measure the deviations between sample 
or population values predicted by a model and 
the observed values [37]. The RMSE value can 
be obtained by using Eq. 1. 
 

n

XX
RMSE

n

i idelmoiobs∑ =
−

= 1
2

,, )(
       (Eq. 1)  

Where Xobs is the observed value, and 
Xmodel is the model predicted value at 
time/place i.

 
Table 2 The parameters selected for the ANN downscaling model 

ANN network type Parameters Name 
MLP 
(Multi-layer 
perceptron: feed-
forward networks) 

Number of layers 3 
Neurons:  
Inputs: 
Hidden:  
Output:  

 
06 
12 
01 

Activation function Sigmoid in the hidden layer 
Linear in the output layer 

Training algorithm Levenberg-Marquardt 
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4.2) Coefficient of determination (R2) 
The coefficient of determination (R2) shows 

the intensity and control of a linear relationship 
between two variables [38]. The correlation is 
+1 in the case of a perfect increasing linear 
relationship, and -1 in case of a decreasing 
linear relationship. The R2 value can be obtained 
by using Eq. 2 

 

𝑅𝑅2 = �∑ (𝑂𝑂𝑖𝑖−𝑂𝑂𝚤𝚤���)∗(𝑃𝑃𝑖𝑖−𝑃𝑃𝚤𝚤� )𝑛𝑛
𝑖𝑖=1 �2

�∑ (𝑂𝑂𝑖𝑖−𝑂𝑂𝚤𝚤���)∗∑ (𝑃𝑃𝑖𝑖−𝑃𝑃𝚤𝚤� )𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 �

            (Eq. 2) 

 
Where, 𝑂𝑂𝑖𝑖 and 𝑃𝑃𝑖𝑖 are observed and simulated 

value respectively, n is the total number of test 
data and 𝑃𝑃𝚤𝚤�, 𝑂𝑂𝚤𝚤�  are the mean value. 

 
4.3) Nash-Sutcliffe coefficient (E) 

The Nash-Sutcliffe model efficiency coef-
ficient (E) is commonly used to assess the 
predictive power of hydrological discharge 
models [5, 39]. It is defined as Eq. 3. 

 

 
∑
∑

=

=

−

−
−= n

i obsiobs

n

i delmoiobs

XX

XX
E

1
2

,

1
2

,

)(

)(
1          (Eq. 3) 

 

Where Xobs is the observed value, and 
Xmodel is the model predicted value at 
time/place i. Nash-Sutcliffe efficiencies can 
range from -∞ to 1. An efficiency of 1 (E = 1) 
corresponds to a perfect match between model 
and observations. 

 
Results and discussions 
1) Graphical analysis of ANN model during 
calibration and validation 

After the selection of predictors and 
predictands, the ANN model is calibrated and 
validated using the historical datasets. In the 
case of any missing rainfall data in the IMD 
database, the linear interpolation method is used 

to find the missing data. As discussed earlier, 
the PCA is applied to select the predictor to train 
the ANN model. The first seven principal 
components, i.e., predictors, are used in the 
analysis, which covers 99.77% of the predictor 
data property. For developing the ANN model, 
70% of data is used for training purposes, and 
the remaining 30% is used for testing and 
validation. 

The graphical representation of ANN 
predicted and observed precipitation data had 
been shown in SM 9 and SM 10 in the form of 
scatterplot and bar diagram. The scatterplots 
between observed and ANN predicted monthly 
precipitation for both the calibration and vali-
dation period for all the hilly regions are 
satisfactory since the R2 value is ranging from 
0.79 to 0.9. The bar diagram between ANN and 
actual precipitation shows the better-predicting 
capability of the ANN model. Along with the 
graphical representation, various statistical 
parameters were also used to analyze the results. 
The value of the statistical parameters is shown 
in Table 3. The statistical parameters also 
validate the ANN model performance, as in 
most of the hilly districts, the R2 value is more 
than 0.8 during both calibration and validation 
phase except for Champawat and Rudraprayag. 
The Nash coefficient (E), is also approaching 
one except for Champawat and Pauri districts 
for both the phases, i.e., calibration and 
validation. 

The analysis of the results shows that the 
ANN model, combined with the PCA for the 
selection of predictors, is suitable for the 
statistical downscaling of the GCM data. Based 
on the ANN model, we performed the scenario 
analysis, i.e., the rainfall has been predicted for 
the three RCPs, i.e., RCP2.6, RCP4.5, and 
RCP8.5.
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Table 3 Statistical parameters used for the model performance evaluation in terms of RMSE, 
R2, and E for the ANN model in all nine hilly districts of Uttarakhand 

Station/ 
Districts name 

Parameters in the training phase  Parameters in validation phase 
R2 RMSE E  R2 RMSE E 

Almora 0.84 11.00 0.45  0.85 15.00 0.83 
Bageswar 0.80 2.07 0.75  0.73 2.95 0.66 
Chamoli 0.88 12.61 0.84  0.89 12.69 0.82 
Champawat 0.70 2.02 0.49  0.65 2.15 0.59 
Pauri Garhwal 0.84 2.39 0.33  0.92 2.29 0.35 
Pitthoragarh 0.79 1.86 0.72  0.85 2.11 0.83 
Rudraprayag 0.72 1.85 0.63  0.86 1.98 0.80 
Tehri Garhwal 0.84 17.00 0.81  0.91 16.35 0.86 
Uttarkashi 0.80 19.49 0.73  0.85 14.91 0.83 

 
2) Scenario analysis for the RCPs 2.6, 4.5 and 
8.5 

For predicting the effect of climate change 
on precipitation trends CanESM2 GCM scena-
rio, i.e., RCP2.6, RCP4.5, and RCP8.5, were 
used. The period from 1961–2000 is selected as 
the baseline period to evaluate the change in 
rainfall. The selection of the baseline period is 
based on the procedure mentioned in the lite-
rature that 40 years of data is sufficient to assess 
the transformation in climate. So, the prediction 
of future rainfall is based on the comparison of 
these two-time extents, i.e., 1961–2000 and 
2005–2100. After calibration and validation of 
ANN model, the model is used to downscale the 
large-scale predictor variables derived from the 
RCP2.6, RCP4.5, and RCP8.5 scenarios of 
CanESM2, with daily precipitation simulated 
for the following periods: historical (1961–2000), 
the 2020s (2005–2021), 2050s (2022–2051), 
2080s (2052–2080) and 2100s (2081–2100). As 
mentioned above, the historical simulation 
(1961–2000) acts as a reference for future 
projection and changes. Predicted changes in 
annual mean precipitation during future 
periods, i.e., 2020, 2050, 2080, and 2100, in all 
nine hilly regions of Uttarakhand are shown in 
Figure 4 and Table 4, which shows a mixed 
pattern of positive or negative changes, with 
different trends in 2020 and 2050, and steady 

with the increases in 2080 and 2100. The trend 
shows that as compared to the baseline period, 
the amount of rainfall will increase significantly 
in all nine basins of Uttarakhand between 2081 
to 2100 due to the change in the climate. While 
there is a mixed trend in rainfall, under CanEsm2 
scenarios of RCP2.6 and RCP 4.5. The fluctuation 
in rainfall is slightly different for two scenarios, 
i.e., RCP2.6 and RCP4.5, as compared to the 
worst emission scenario of RCP8.5. For RCP2.6, 
the up to 2080, sometimes the rainfall has an 
increasing trend, and in some decades, it has a 
decreasing trend. For RCP4.5, the increasing 
trend is slightly higher than the baseline period 
for 2020 and 2050, and in 2080 and 2100. For 
quantifying the variation in rainfall, we calculated 
the percentage of bias (PBIAS) or % change with 
respect to the historical data. The % change or 
PBIAS measures the average tendency of the 
predicted data to be larger or smaller than their 
observed counterparts. The optimal value of 
PBIAS is 0.0, with low magnitude values 
indicating an accurate model simulation. Positive 
values indicate underestimation bias, and negative 
values indicate over-estimation bias. The PBIAS 
is calculated as Eq. 4. 

 

     𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)
𝑥𝑥𝑖𝑖

× 100               (Eq. 4) 
 

Where yi is the predicted value and xi is the 
observed value. 
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Based on the % change value, the approxi-
mate predicted change up to the 21st century 
would be varying up to 21% in hilly regions of 
Uttarakhand under the scenarios of RCP8.5 
(Figure 4). 

 
3) Seasonal variation of rainfall: trend analysis 

For the monsoon season, i.e., for June, July, 
August, and September, the rainfall has been 
plotted with respect to the projected scenario. In 
other words, a comparative diagram has been 
plotted between historical and different 
scenarios rainfall for the Uttarakhand hilly areas 
cumulatively and shown in Figure 5. The graph 

shows an increase of around 200% in rainfall 
for the RCP8.5 and approximately 180% for 
RCP4.5 with respect to the historical monsoon 
rainfall data. In the case of RCP 2.6, there is not 
so much variation in rainfall; the rainfall is 
similar to the historical rainfall. The volume of 
rainfall has also projected a shift from August to 
September in the case of RCP8.5, as shown in 
Figure 6. i.e., a shift was observed in the seasonal 
rainfall (i.e., monsoon rainfall of a year). In 
other words, precipitation in the early months of 
the monsoon will reduce in the future while 
there may be an increased rainfall in the last 
month, i.e., around September.

 
Table 4 Projected future changes of annual mean precipitation in the all nine hilly districts of 
Uttarakhand 

Scenario RCP2.6 RCP4.5 RCP8.5 
Timeline 2020 2050 2080 2100 2020 2050 2080 2100 2020 2050 2080 2100 
Chamoli -1.69 -0.33 4.73 5.25 1.02 -1.78 7.07 8.59 5.82 5.38 9.27 19.51 
Uttarkashi -0.22 1.25 -1.89 4.66 1.3 4.81 6.13 8.09 8.03 11.39 12.53 21.5 
Tehri  -1.08 2.7 1.53 5.05 1.05 2.8 5.17 10.7 4.32 9.18 10.85 15.99 
Almora 0.02 0.41 1.32 2.54 0.44 2.07 4.11 6.45 4.22 6.44 9.45 15.35 
Bageswar  0.42 0.66 1.47 2.78 0.49 1.47 2.33 7.23 6.54 6.98 10.12 17.85 
Champawat 0.37 0.23 1.06 1.96 1.04 2.44 3.42 8.44 4.98 5.23 9.87 13.22 
Pauri Garhwal  -0.12 -0.24 0.49 1.34 1.54 2.13 2.33 6.96 7.26 6.98 9.61 19.64 
Pitthoragarh  -0.2 0.29 0.67 2.01 1.11 1.78 3.73 4.56 5.87 7.12 11.45 20.23 
Rudraprayag 0.04 0.11 0.94 1.94 1.64 1.97 3.61 5.81 7.23 7.77 11.92 19.84 

 

 
Figure 4 Showing PBIAS under different scenarios. 
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Figure 5 Projection of rainfall under different scenarios for monsoon season  

(June-July-August-September) with respect to the historical data. 
 

 
Figure 6 Projection of rainfall for three regions for the monsoon season  

(June-July-August-September) with respect to the historical data. 
 

Conclusions 
The rainfall in hilly districts of Uttarakhand 

is following a steadily increasing trend in the 
case of RCP4.5 and RCP8.5 scenarios. In reverse, 
the trend in the case of RCP2.6 follows a mixed 
type. There was an apparent indication of 

climate change in upper Himalayan districts like 
Pithoragarh, Rudraprayag, and Chamoli, which 
was observed from the peak of monthly rainfall. 
The percentage change in monsoon rainfall may 
go up to 200% in the case of RCP8.5 in 
comparison with the observation data. Also, the 



App. Envi. Res. 43(1) (2021): 1-13                                                                                                                        11 

volume of rainfall may increase in the case of 
RCP8.5 between July to September as compared 
to the historical data, i.e., there may be a shift of 
monsoon rainfall in the future. The present study 
is conducted under different constraints like 
missing rainfall data, etc. which may affect the 
projection of rainfall. Further, snowmelt has not 
been considered in the study. Overall, the present 
study is providing an enhanced knowledge of 
climate change appraisal in the hilly regions of 
Uttarakhand. The outcomes are relevant in the 
formulation of water resources and environ-
mental policies in the state. However, further 
research studies have to be carried out, incor-
porating the different GCMs and investigate 
other features, such as the effect of climate 
change on base flow, temperature fluctuation, 
etc. The findings of this study are in line with 
the conclusions made by [40], where it has been 
stated that there may be a shift in future 
monsoon rainfall, and there is a rising trend of 
rainfall over the Himalayan foothill. 
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