Biaxial flexural strength of zirconia ceramic with differences in core : veneer ratio

Prarom Salimee
Teera Thammawasi

Follow this and additional works at: https://digital.car.chula.ac.th/cudj

Part of the Dentistry Commons

Recommended Citation
Salimee, Prarom and Thammawasi, Teera (2011) "Biaxial flexural strength of zirconia ceramic with differences in core : veneer ratio," Chulalongkorn University Dental Journal. Vol. 34: Iss. 2, Article 1. DOI: 10.58837/CHULA.CUDJ.34.2.1
Available at: https://digital.car.chula.ac.th/cudj/vol34/iss2/1

This Original article is brought to you for free and open access by Chula Digital Collections. It has been accepted for inclusion in Chulalongkorn University Dental Journal by an authorized editor of Chula Digital Collections. For more information, please contact ChulaDC@car.chula.ac.th.
บทความวิจัย

บทความวิจัย: ความแข็งแรงตัดขวาของสองแฉกของวาดูเซรามิกชนิดเซรามิกในยีทอตขนำคริร์ตวิเนียร์ต่างกัน

บรรณาธิการ ขลิมิ

วัสดุและวิธีการ ทำการขึ้นรูปชิ้นตัวอย่างเชิงรีบกิจเนียรในที่นี้เป็นแบบกิจขนาดเล็กวัสดุยูแรกตาม 15 มิลลิเมตรหนา 1.2 มิลลิเมตร จำนวน 50 ชิ้น แบ่งเป็น 5 กลุ่ม กลุ่มละ 10 ชิ้นตามอัตราส่วนความหนาของชิ้นโดยอัตราร้อยละ วิเนียร์ กลุ่มที่ 1 = 1:1 (คอร์รัชชิ้น) กลุ่มที่ 2 = 2:1 (คอร์ร์ 0.8 มิลลิเมตร) กลุ่มที่ 3 = 1:1 (คอร์ร์ 0.6 มิลลิเมตร) กลุ่มที่ 4 = 1:2 (คอร์ร์ 0.4 มิลลิเมตร) และ กลุ่มที่ 5 = 0:1 (วัสดุที่ชื่อว่า นำซิลิโคนยามสุกและคำนวณหาค่าความแข็งแรงตัดขวาของสองแฉก ตามมาตรฐาน ISO 6872 ปี ค.ศ. 1995 โดยใช้เครื่องทดสอบสากลที่ความเร็วตัดกัน 1 มิลลิเมตรต่อนาที จนถึงการย้ายแยก

ผลการศึกษา คำนวณความแข็งแรงตัดขวาของสองแฉกและคำนวณแบบมาตรฐานของกลุ่มที่ 1 = 921.48 ± 106.86 แบบมาตรฐาน กลุ่มที่ 2 = 1009.49 ± 98.72 แบบมาตรฐาน กลุ่มที่ 3 = 895.68 ± 92.96 แบบมาตรฐาน กลุ่มที่ 4 = 768.08 ± 73.17 แบบมาตรฐาน และกลุ่มที่ 5 = 70.49 ± 8.54 แบบมาตรฐาน ผลการวิเคราะห์ทางสถิติวิธี การทดสอบความแปรปรวนทางเดียวแล้วทำการเปรียบเทียบเชิงตัวแปรแบบแบบแผน พบว่า กลุ่มที่ 1-3 มีค่าความแข็งแรงตัดขวาของสองแฉกแตกต่างกันอย่างมีนัยสำคัญ (p > 0.05) แต่มีความแตกต่างกันกลุ่มที่ 4 และ 5 อย่าง มีนัยสำคัญทางสถิติ (p < 0.05)

สรุป ที่ความหนาแปรปรวนของชิ้นตัวอย่าง 1.2 มิลลิเมตร ยอดรองคริร์ตวิเนียร์ 1:1 และ 1:2 ให้ความแข็งแรงตัดขวาของสองแฉกแตกต่างกันอย่างมีนัยสำคัญ แต่ยอดรองคริร์ตวิเนียร์มีความแข็งแรงตัดขวาของสองแฉกแตกต่างกัน ทำให้ความแข็งแรงตัดขวาของสองแฉกแตกต่างกันอย่างมีนัยสำคัญ และพบผลแตกต่างระหว่างชิ้นในกลุ่มที่ประกอบด้วยขั้นเซรามิกและชิ้น ในวิเนียร์

(ว. หนังสือพิมพ์ 2554;34:75-86)

คำสำคัญ: ความแข็งแรงตัดขวาของสองแฉก; เซรามิก; ยอดรองคริร์ตวิเนียร์
This page contains a discussion on the properties of various dental materials, focusing on their biocompatibility and mechanical properties. The text includes references to the materials used in dental prosthetics and their properties.

A summary of the text in English:

- The text discusses the properties of dental materials, specifically focusing on their biocompatibility and mechanical properties.
- It mentions the use of various dental materials such as IPS Empress (Ivoclar, Schaan, Liechtenstein) and In-Ceram Alumina (Vita Zahnfabrik, Bad Sackingen, Germany).
- The text highlights the importance of biocompatibility and non-cytotoxicity in dental materials.

A summary of the text in Thai:

- The text discusses the properties of dental materials, focusing on their biocompatibility and mechanical properties.
- It mentions the use of various dental materials such as IPS Empress (Ivoclar, Schaan, Liechtenstein) and In-Ceram Alumina (Vita Zahnfabrik, Bad Sackingen, Germany).
- The text highlights the importance of biocompatibility and non-cytotoxicity in dental materials.

The text contains technical terms and references to specific dental materials and their properties.
เรื่องเนื้อเข้ามก ดังนั้นการวิจัยครั้งนี้ จึงมีวัตถุประสงค์เพื่อทำการศึกษาถึงอัตราส่วนความหนาของคอร์สเซรามิคและวีเนียร์คอร์สเด่นที่เหมาะสมที่จะให้ความแข็งแรงแก่คอร์ส-พันและเหล็กพันของคอร์สเนื้อหิมคิดุ-ที่ชี้ที่ โดยเปรียบเทียบความแข็งแรงตัดขวางลองแกนและพลิกและมุมการแตกหัก ในขั้นตัวอย่างที่มีความหนาบางของส่วนคอร์สและวีเนียร์คอร์สเด่นแตกต่างกัน

วัสดุและวิธีการ

ขั้นรูปขึ้นตัวอย่างจากวัสดุคอร์สเนื้อหิมออกไซด์เซรามิกซึ่งมีอัตราส่วนออกไซด์สมออยู่ร้อยละ 5 และวีเนียร์คอร์สเซรามิค (Cercon Base and Cercon Ceram Kiss, Degudent GmbH, Hanue–Wolfgang, Germany) โดยแบ่งขึ้นตัวอย่างออกเป็น 5 กลุ่ม กลุ่มละ 10 ชิ้น แบ่งตามความหนาและอัตราส่วนคอร์สออกซิเดนซ์ ดังตารางที่ 1 โดยแบ่งกลุ่มเล็กน้ำหนักสูงย่อยกลาง 15 มิลลิเมตร หมา 1.2 มิลลิเมตร (รูปที่ 1)

ตารางที่ 1 การแบ่งกลุ่มชิ้นตัวอย่างที่ใช้ในการศึกษา

<table>
<thead>
<tr>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core : veneer ratio</td>
<td>1:0</td>
<td>2:1</td>
<td>1:1</td>
<td>1:2</td>
<td>0:1</td>
</tr>
<tr>
<td>Core : veneer thickness (mm.)</td>
<td>1.2:0</td>
<td>0.8:0.4</td>
<td>0.6:0.6</td>
<td>0.4:0.8</td>
<td>0:1.2</td>
</tr>
<tr>
<td>Number</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

![Veneer](1.2 mm.)

![Core](15 mm.)

รูปที่ 1 โครงสร้างและขนาดชิ้นตัวอย่างที่ใช้ทดสอบความแข็งแรงตัดขวางลองแกน

Fig. 1 Structure and dimension of test specimen for biaxial flexural strength
ขนาดที่ต้องการร้อยละ 30 ของความยาวของหลังการ
เฉพาะค่าและนำเข้าบริษัทผู้ผลิต จากนั้นนำมามัดดวย
กระดาษบรรจุในเนื้อเยื่อ 100 120 360 500 และ 800
tามาแล้ว เนื้อเยื่อที่รูปมีหนากิโลกรัม 1.350 องศาเซลเซียส เป็น
เวลา 6 ชั่วโมง ที่จะให้เนื้อ วัดคุณคุณความทนทานโดยใช้
อุณหภูมิโอมิเตอร์ วัด 5 ค่าหนึ่ง ดังรูปที่ 2 นำชิ้นตัวอย่าง
มาจัดจัดร้อยรากโดยเชื่อมตัวอย่างให้สัมผัสกันนำากระดับ
ที่อยู่ราก (VITA In-Ceram Testing Liquid, Vita
Zahnfabrik, BadSakingen, Germany) ทั้งสองผ่าผัน ๆ
และ 10 นาที นำชิ้นตัวอย่างที่ตรวจแล้วนำาทำการทดสอบ
(sandblast) ด้วยแรงอุปกรณ์ไนโตรเจนโซเดียม 110 โลดรอน
ที่ความดัน 3.5 เฉลี่ยวิดydro-คิล ระยะทาง 10 มิลลิเมตร
ระยะที่มีผลต่อ 45 องศาปานกลาง แล้วนำาไปทำความสะอาด
ด้วยเครื่องทำความสะอาดแบบความเย็นฟองน้ำเป็นเวลา
15 นาที

การเตรียมชิ้นเนื้อเยื่อ

สับชิ้นเนื้อเยื่อพร้อมทั้งส่งชิ้นตัวอย่างในกลุ่มที่
2-5 โดยในกลุ่มที่ 2-4 ทำให้พบชิ้นตัวอย่างโดยเนื้อเยื่อ
และนำาไปเข้ามาตามความโปรแกรมในที่บริษัทกำหนด
ทั้งให้เนื้ออิ่น จากนั้นนำไปสู่กลุ่มในแบบชิ้นตัวอย่างที่หนูกิโล
ขนาดที่ต้องการเพื่อกระดาษบรรจุในเนื้อเยื่อ สำหรับกลุ่ม
ที่ 5 ชิ้นชิ้นเนื้อเยื่อพร้อมทั้งส่งชิ้นโดยใช้แผ่นแก้วใบ
(glass slide) รวมกับแอมิเตอร์ที่มีสูงจากปุ่มสัมผัส แช่น้ำ
น้ำเยื่อและน้ำเยื่อตั้งเวลาไปตามโปรแกรมในที่บริษัทกำหนด
ทั้งให้เนื้อ นำมากร่อนแล้วนำาที่พบริเวณเนื้อเยื่อลงด้วย
หัวกร่อยที่เทคโนโลยีและหัวด้วยกระดาษหน้าเบอร์ 360 500
800 และ 1000 ตามลำดับ ให้ได้ความหนาและรูปมน้ำหนักที่
ถูกต้อง วัดความหนาขั้นต้นอย่างให้ได้ความหนา 1.2 ± 0.005
มิลลิเมตร และสัมผัสคนนังกิโลกรัม 0.5 มิลลิเมตร นำาไป
ทำความสะอาดด้วยเครื่องทำความสะอาดแบบความเย็นฟอง
น้ำเป็นเวลา 15 นาที ในขณะมีการรั่วซึ่งด้วยวง เชิญ
ตัวอย่างด้วยกลิตซ์ หากพบชิ้นเนื้อเยื่อรุ่น รูปรูป บั้นแตก
หรือไม่ได้เนื้อ นำาทำการดัดแปลงและล้างชิ้นใหญ่เห็น
เก็บอันดับอย่างที่ได้ในลูกุณภูมิที่

การทดสอบความแข็งแรงดัดขวางของแกน

นำชิ้นตัวอย่างมาทดสอบความแข็งแรงดัดขวางของ
แกนตามมาตรฐาน ISO 6872 ปี ส.ศ. 199513 โดยใช้เครื่อง
ทดสอบสกัล (Instron testing machine model 5566,
Instron Co., USA) และเป็นทดสอบเป็นลูกอุปหลักกีของ
รับหลัก (piston on three ball) โดยใช้ที่กังหันน้ำหนัก
ผ่านคุณยกลักษณะ 0.75 มิลลิเมตร ใช้ชิ้นตัวอย่างลงบนแกน
ทดสอบโดยให้ส่วนของวัสดุเยื่อพร้อมส่งผ่านมัน
เคลื่อนนักทดสอบที่รุ่นกลางอย่างด้วยความเร็ว
1 มิลลิเมตรต่อน้ำหนักที่จำแนก บันทึกทำลายความคุณ
ค่าความแข็งแรงดัดขวางของแกนตามมาตรฐานสู่รับชิ้นงาน
ชั้นเดียว (กลุ่มที่ 1 และ 5)13 และชิ้นงานสองชั้น (กลุ่มที่ 2
3 และ 4)14

นำชิ้นยุทธ์ที่ได้มาวิเคราะห์ทางสถิติ โดยใช้โปรแกรม
เลขพื้นฐาน รุ่น 13 (SPSS Inc, USA) ทำการวิเคราะห์
ดัดขวางสองแผนภูมิและค่าเปรียบเทียบมาตรฐานและวิเคราะห์

รูปที่ 2 จุดแสดงตำแหน่งการวัดควบคุมความหนาของชิ้นตัวอย่าง ลูกศรแสดงตำแหน่งที่ใช้วัดขนาดเล็กผ่านดูนูยกล้าง
Fig. 2 Locations used to control thickness (dots) and diameter (arrows)
ผลการศึกษา

จากผลการทดลอง ค่าเฉลี่ยแรงที่แตกสูงสุดในแต่ละกลุ่ม แสดงในรูปที่ 3 น่าแวนะแตกสูงสุดของแต่ละกลุ่ม ค่าน้ำหนักความแย่งแรงตัดของวงกลม ถ้านั้นก้ามรูปใหม่ ได้แสดงภาพกระจายตัว มีความเป็นไปได้ที่กลุ่มที่ 1 และ 5 จะมีลักษณะเหมือนกันใน ค่าการผลิตแรงตัดของวงกลม (Levene’s Test) และการเปรียบเทียบที่มีการแปลงแบบเทียบ (Tamhane multiple comparison) พบว่าในกลุ่มที่ 1 และ 3 มีค่าความแย่งแรงตัดของวงกลมแตกต่างกันมากไม่มีนัย สำคัญทางสถิติ และเมื่อนำไปเปรียบเทียบกับกลุ่มที่ 4 และ 5 พบว่า มีความแตกต่างกันยังไม่มีนัยสำคัญทางสถิติ (รูปที่ 4) ซึ่งต่อไปนี้แสดงเป็น 2 ลักษณะ คือ การแตกเป็นส่วนๆ ตามแนวรัศมี ซึ่งพบในกลุ่มตัวอย่างที่เป็นขั้น เดียว คือ กลุ่มที่ 1 และ 5 (รูปที่ 5) และการแตกลอนระหว่าง ขั้น (delamination) ซึ่งพบในกลุ่มที่เป็นสองขั้น (รูปที่ 6 และ 7) โดยขั้วร้อยละที่แตกลอนส่วนใหญ่มีชั้นของพอล์ ไลน์ห้องติดกันตัวกัน

เมื่อพิจารณาภาพแสดงความแย่งพันธุ์ระหว่างระยะทาง กันแรงที่เปลี่ยนไปของขั้นตัวอย่างทั้ง 5 กลุ่ม พบว่ามี ลักษณะเหมือนกันเล็กน้อย มีเอกลักษณ์ของการพันธุ์ที่สัมพันธ์กับ การแตกขั้นของขั้นตัวอย่างพื้นจุดเดียว (รูปที่ 8)

วิจารณ์

ในการศึกษาที่ทำการทดลองโดยให้ขั้นเครื่องยุ่นตัวเล็ก โดยให้ขั้นนี้มีการแรงดังกล่าว เพื่อสามารถนำผลเรียบ เทียบกับเข้ามิตรเครื่องยุ่นขั้นต่อและโรคเพื่อลดแรง 2 หรือได้ ทำการศึกษาไว้ก่อนหน้านี้[12] โดยมีการศึกษาที่แสดงให้เห็น ว่าค่าความแย่งแรงตัดของวงกลมได้รับผลจากคุณสมบัติ

![Diagram](attachment:diagram.png)

= no significant difference (p > 0.05)

รูปที่ 3 แผนภูมิแสดงค่าเฉลี่ยของแรงที่ทำให้เกิดการแตกน้ำมือเข้ามิตร 5 กลุ่ม

Fig. 3 Mean and standard deviation of fracture force of 5 groups
Fig. 4 Mean and standard deviation of biaxial flexural strength of five groups

Fig. 5 Fracture mode of radial crack found in monolayer specimens: a) group 1 zirconia core broke into 4–6 pieces b) veneering porcelain broke into 2–4 pieces
Fig. 6 Fracture mode in bilayer specimen in group 2 (a), group 3 (b), and group 4 (c). Radial crack were found in combination with delamination of veneer porcelain near loading point.

Fig. 7 Scanning electron micrograph showed fracture pattern in specimen of group 2

a. Delamination at the interface and cone crack (arrow) were found (75 x)

b. Fracture surface at bonding interface, delamination of paste liner from core material was observed (2000 x)
Fig. 8 Pattern of load–extension relation in testing specimen. Single peak of graph at fracture point was observed in every group.
กระหว่างนี้ดังกล่าว[16] จากงานบริวารนี้ค่อนข้างสภาพที่หมู่ของโครงสร้างของไขมีอยู่แล้วบางที่มีประโยชน์ในช่องบรรจุแบบ 3.5 เท่า (210 และ 60 กิโลกรัม) ทำให้เก็บล่างและแยกอย่าง แรงในเช่ามีกี่ขั้วที่ทำได้ไม่ ผลค้างล่างกับการศึกษา ก่อนนั้นนี้[12] ซึ่งพบว่าในเช่ามีค่อนข้างสภาพที่หมู่ของโครงสร้างและไขมีอยู่แล้วบางที่ทำให้เก็บล่างก็ในระดับขั้วของ อินเซร์แย่งส่งใหญ่ แต่ไม่พบการแตกลักษณะในไฟฟ้า เลเซอร์ในที่ 2 ในที่มีค่อนข้างสภาพที่หมู่ของโครงสร้างและไขมีอยู่แล้วที่ต่างกันเพียง 1.4 เท่า

คำสั่งประสิทธิ์การขยายตัวเมื่อจะเก็บล่างของгрузลูก แต่จะมีค่อนข้างการติดต่อของวงกลมขึ้นกับ[21] โดยกรณีสูง โค้งมีมีค่า 10.5 x 10^-6/องศากรอบ แต่ไขมีประโยชน์ในโครงสร้างของไขมีขึ้นเรื่อยๆ มีค่า 9.2 x 10^-6/องศากรอบ ที่มีทุ่มนิ้ว 25-500 องศาแคลิบเรซิ่น ทำให้มีค่อนข้างที่มากกับได้ของ วงกลมที่สั่งของ De Jager และคณะ[22] สรุปว่าการที่จะเพิ่ม ความแข็งแกร่งของครอบพื้นผิวพิเศษนั้น นั่นก็คือไขมีประโยชน์เพิ่ม ปั้นรูปที่ติดต่อขั้วของโครงสร้างเป็นตนที่คำว่า การที่มีคำ สั่งประสิทธิ์การขยายตัวเมื่อจะเก็บล่างที่ไม่เก็บล่าง ทำให้เก็บล่าง ผิดถึงขั้วไขมี จึงแน่นอนได้คำว่าต่างกันเพียงที่สูงเท่าที่ จะเป็นไปได้

ดังนั้นการใช้ไขมีประโยชน์ในขณะที่เก็บล่างของโครงสร้างใน ในการปลูกพันธุ์แม้จะมีแน่นอนเมื่อถึงปีธุรกิจของธุรกิจใน ซึ่งจะเก็บล่างผิดของโครงสร้างจะเก็บล่างกับความแทน ของโครงสร้างขั้ว แต่ไขมีประโยชน์ในการเก็บล่างก็มีค่อนข้างแรง มากกว่า แต่ไขมีประโยชน์ในการเก็บล่างนี้ถึงขั้วพันธุ์โครงสร้าง และไขมีประโยชน์ในที่เชื่อมโยงพันธุ์ไขมีเนื่องจากมันจะเก็บล่าง แตกที่ได้มาก

เมื่อพิจารณาจากลักษณะการแตกของขั้วโดยอย่างพบว่า ในกลุ่มที่มีขั้วเดียว ซึ่งต่างอย่างไขมีประโยชน์ในใหญ่มีการ แตกในแนวตัด (2-4 ชั้น) มากกว่าขั้วเดียวถัดนั้น (2-4 ชั้น) ต่อไปที่ 5 เนื่องจากโครงสร้างของไขมีประโยชน์ในความแข็งแรงมาก อาจจึงกระจายแข็งแรงไปยังบริเวณขั้วที่เกิดการแตกได้มากก็ เนื่อง ออกจากจุดที่บริเวณหนึ่งยอดลักษณะสำหรับพันธุ์ของโครงสร้าง โดยเนื่องลักษณะแบบที่มีความมั่นคง ต่างจากไขมีประโยชน์-- จนถึงขั้วซึ่งมีพื้นที่ผนึกทั่วไป ส่วนลักษณะแยกเป็นกลุ่มที่ 2 3 และ 4 พบการแตกแนวตัดมีและมีการแตกของชั้นไขมีในบริเวณล่างกล้างต่ำมาก (รูปที่ 6) ส่วนไขมีที่ขั้นกันของ ของขั้นต่ำอย่างจะไม่แตกล่างของผนึกเนื่องมาจากความเด่น ที่เกิดจากการสั่นผเรียง (contact stress) จะมีอิทธิพลให้เกิด ความแตกต่างกับบริเวณหนึ่ง[23] ซึ่งเห็นการแตกล่างของ ขั้นไขมีส่งผลกระทบและผลค้างล่างกับการกระทำ ให้เกิดผลลัมม์ที่สั้นมากเกินนั้น[16,23] นอกจากนี้ เมื่อปรับเปลี่ยนกันจะพบว่าความ_pluginของขั้นไขมีส่งผล นอกจากที่เกิดติดกันขั้นไขมีส่งผลของ 2 จะเก็บล่างในกลุ่มที่ 3 และกลุ่มที่ 4 เป็นไปได้ ซึ่งต่างอย่างที่มีขั้นไขมีที่บริเวณ เกิดการสั่นผเรียง (deflection) ได้มากกว่า จึงเกิดการแตกล่าง ของขั้นไขมีนี้เป็นบริเวณกัวลำดับ ดังนั้นล่างโครงสร้างได้ที่ หน้ากว่าจะพิจารณาถึงการได้ใจได้ ซึ่งเกิดกับเกิดความ แข็งแกร่งของโครงสร้างก็ขึ้นมาถ้ากัน

ในการทดลองแน่นบทว่าขั้นไขมีมีเพียงแต่ติดไป กับส่วนของขั้นไขมีที่แตกถึงอัตราการภายที่ขั้นไขมีเนื่อง เป็นส่วนใหญ่ (รูปที่ 7) องค์ประกอบของมันจะมีผล ทำให้ขั้นไขมีติดไปกับขั้นไขมีเนื่อง ซึ่งหากไขมีเป็น เพลชโปรดีพิเศษที่สิ้นเปลืองก่อนพื้นที่มีซีเลเนียม (selenium) เป็นองค์ประกอบ จึงทำให้ขั้นกันได้ติดมากกว่าส่วนครั้ง[25] และเป็นไปได้ ว่าขั้นไขมีจะถูกที่มีค่อนข้างสภาพพันธุ์ที่ละ และส่วน ประกอบที่กัดโดยกับขั้นไขมีของโครงสร้าง ทำให้เกิดการแตก

Biaxial flexural strength of zirconia ceramic with differences in core : veneer ratio

Prarom Salimee¹ D.D.S., Ph.D.
Teera Thammawasi², D.D.S.

¹Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University
²Graduate student, Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University

Abstracts

Objective To investigate the biaxial flexural strength (BFS) and mode of fracture of zirconia ceramic with different thickness of core: veneer ratio.

Materials and methods Fifty disc specimens (15 mm. in diameter and 1.2 mm. in thickness) of zirconia ceramic were fabricated for 5 groups (n=10) according to core:veneer ratio; group 1 = 1:0 (core alone), group 2 = 2:1 (core 0.8 mm) group 3 = 1:1 (core 0.6 mm.), group 4 = 1:2 (core 0.4 mm.) and group 5 = 0:1 (veneer porcelain alone). All specimens were subjected to biaxial flexural test following ISO 6872: 1995 until failure occurred and calculated the BFS. All tests were carried out on the Instron 5566 with crosshead speed of 1.0 mm/min.

Results The means BFS ± SD of group 1-5 were 921.48 ± 106.86 MPa, 1009.49 ± 98.72 MPa, 895.68 ± 92.96 MPa, 768.08 ± 73.17 MPa and 70.49 ± 8.54 MPa, respectively. ANOVA and Tamhane test revealed that there was no significant difference among the BFS of group 1, group 2 and group 3 (p > 0.05) but the BFS of these groups were significantly higher than the BFS of group 4 and group 5 (p < 0.05).

Conclusion In case of specimen with 1.2 mm. in thickness, the difference of core and veneer ratio 1:0, 2:1 and 1:1 did not affect the BFS, but decreasing in thickness of core and veneer ratio to 1:2, the BFS of zirconia ceramic was significantly decreased. Delamination of core–veneer interface can be observed in all core–veneer specimens.

(CU Dent J. 2011;34:75–86)

Key words: Biaxial flexural strength; Core:veneer ratio; Zirconia ceramic